Game Theory and Strategy

Introduction

Levent Koçkesen

Koç University
Game Theory: Definition and Assumptions

- Game theory studies strategic interactions within a group of individuals
 - Actions of each individual have an effect on the outcome
 - Individuals are aware of that fact
- Individuals are rational
 - have well-defined objectives over the set of possible outcomes
 - implement the best available strategy to pursue them
- Rules of the game and rationality are common knowledge
Example

- 10 people go to a restaurant for dinner
- Order expensive or inexpensive fish?
 - Expensive fish: value = 18, price = 20
 - Inexpensive fish: value = 12, price = 10
- Everybody pays own bill
 - What do you do?
 - Single person decision problem
- Total bill is shared equally
 - What do you do?
 - It is a GAME
Example: A Single Person Decision Problem

Ali is an investor with $100

<table>
<thead>
<tr>
<th>State</th>
<th>Good</th>
<th>Bad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonds</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Stocks</td>
<td>20%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Which one is better?
Probability of the good state p
Assume that Ali wants to maximize the amount of money he has at the end of the year.

Bonds: $110
Stocks: average (or expected) money holdings:

$$p \times 120 + (1 - p) \times 100 = 100 + 20 \times p$$

If $p > 1/2$ invest in stocks
If $p < 1/2$ invest in bonds
An Investment Game

- Ali again has two options for investing his $100:
 - invest in bonds
 - certain return of 10%
 - invest it in a risky venture
 - successful: return is 20%
 - failure: return is 0%
 - venture is successful if and only if total investment is at least $200

- There is one other potential investor in the venture (Beril) who is in the same situation as Ali

- They cannot communicate and have to make the investment decision without knowing the decisions of each other

<table>
<thead>
<tr>
<th></th>
<th>Beril</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bonds</td>
</tr>
<tr>
<td>Ali</td>
<td>110, 110</td>
</tr>
<tr>
<td>Venture</td>
<td>100, 110</td>
</tr>
</tbody>
</table>
Entry Game

- **Strategic (or Normal) Form Games**
 - used if players choose their strategies without knowing the choices of others

- **Extensive Form Games**
 - used if some players know what others have done when playing

Diagram

![Game Tree Diagram]

- **Nodes**:
 - **Out**: 0, 4
 - **In**: 2, 2, -1, 0

- **Nodes**:
 - **P**: subdivisions

Levent Koçkesen (Koç University)
Some players have private (and others have incomplete) information.

Ali is not certain about Beril’s preferences. He believes that she is

- Normal with probability p
- Crazy with probability $1 - p$

<table>
<thead>
<tr>
<th>Ali</th>
<th>Bonds</th>
<th>Venture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bonds</td>
<td>110,110</td>
<td>110,100</td>
</tr>
<tr>
<td></td>
<td>100,110</td>
<td>120,120</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beril Bond Venture</th>
<th>Beril Bond Venture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonds</td>
<td>110,110</td>
</tr>
<tr>
<td>Venture</td>
<td>110,100</td>
</tr>
<tr>
<td>Bonds</td>
<td>100,110</td>
</tr>
<tr>
<td>Venture</td>
<td>120,120</td>
</tr>
</tbody>
</table>

Normal (p)

Crazy ($1 - p$)
The Dating Game

- Ali takes Beril out on a date
- Beril wants to marry a smart guy but does not know whether Ali is smart
- She believes that he is smart with probability $1/3$
- Ali decides whether to be funny or quite
- Observing Ali’s demeanor, Beril decides what to do
Game Forms

- **Moves**
 - **Simultaneous**
 - **Sequential**

- **Information**
 - **Complete**
 - Strategic Form Games with Complete Information
 - Extensive Form Games with Complete Information
 - **Incomplete**
 - Strategic Form Games with Incomplete Information
 - Extensive Form Games with Incomplete Information

Levent Koçkesen (Koç University)
Outline of the Course

1. Strategic Form Games
2. Dominant Strategy Equilibrium and Iterated Elimination of Dominated Actions
3. Nash Equilibrium: Theory
4. Nash Equilibrium: Applications
 4.1 Auctions
 4.2 Buyer-Seller Games
 4.3 Market Competition
 4.4 Electoral Competition
5. Mixed Strategy Equilibrium
6. Games with Incomplete Information and Bayesian Equilibrium
7. Auctions
8. Extensive Form Games: Theory
 8.1 Perfect Information Games and Backward Induction Equilibrium
 8.2 Imperfect Information Games and Subgame Perfect Equilibrium
9. Extensive Form Games: Applications
 9.1 Stackelberg Duopoly
 9.2 Bargaining
 9.3 Repeated Games
10. Extensive Form Games with Incomplete Information
 10.1 Perfect Bayesian Equilibrium
 10.2 Signaling Games