Question 1. (Kittel Ch.2 Problem 5) Structure factor of diamond

(a)

diamond structure \equiv fcc \text{ Bravais lattice} + \left[\vec{0}, \frac{a}{4}(\hat{x} + \hat{y} + \hat{z}) \right]

(1)

That is, at \(x_jy_jz_j = 000; 0\frac{1}{2}\frac{1}{2}\frac{1}{2}; 0\frac{1}{2}\frac{1}{2}\frac{3}{4}\frac{3}{4}\frac{3}{4}; 0\frac{1}{2}\frac{3}{4}\frac{3}{4}\frac{3}{4}\frac{3}{4}; \) there are 8 identical atoms.

Recall that

\[\vec{G} = h\vec{b}_1 + k\vec{b}_2 + l\vec{b}_3, \]
\[\vec{r}_j = x_j\vec{a}_1 + y_j\vec{a}_2 + z_j\vec{a}_3. \]

(2)

The structure factor is given with

\[S = \sum_j f_j e^{-i\vec{G} \cdot \vec{r}_j}. \]

(3)

Since \(f_j \) is an atomic property, we can replace all \(f_j \) by \(f \), because all atoms are identical. Furthermore there are 8 atoms in the primitive cell of the diamond structure, so the structure factor should consist of 8 terms. Then, \(S(hkl) \) is equal to

\[S(hkl) = \left[1 + e^{-i\pi(k+l)} + e^{-i\pi(h+l)} + e^{-i\pi(h+k)} + e^{-\frac{i\pi}{2}(h+k+l)} \right]^{(4)} \]

(4)

(b) When all of \(hkl \) is even and simultaneously satisfy \(h + k + l = 4n \), then \(S \) is finite. When they are all odd, \(e^{-\frac{i\pi}{2}(h+k+l)} \) is either equal to \(i \) or \(-i \), so \(S \) can be considered of the form \(z = x + iy \) where \(x, y \) are real numbers and \(z \) is complex. Again the scattered intensity \(S^*S \) is going to be finite. When only one of them is even or only one of them is odd, then \(S \) is equal to 0.

Question 2. (Kittel Ch.3 Problem 5) Linear ionic crystal

(a) The total potential energy of a linear diatomic system is equal to \(U_{\text{total}} = NU_i \), because \(2N \) ions is equal to \(N \) molecules. Here,
\[U_i = \sum_{i \neq j} U_{ij} \, . \]

Let the repulsive potential energy for the nearest neighbors be:

\[U_{\text{rep.}} = \frac{A}{R^n} \, . \] (6)

Then,

\[U_{ij} = \frac{A}{R^n} - \frac{q^2}{R} \text{ for nearest neighbors} \]
\[U_{ij} = \pm \frac{q^2}{p_{ij} R} \text{ otherwise} \] (7)

\[U_{\text{total}} = N U_i = N \sum_{i \neq j} U_{ij} = \frac{N z A}{R^n} - \frac{q^2 N \alpha}{R} \, , \text{ where } \alpha \equiv \sum_{i \neq j} \frac{(\pm)}{p_{ij}} \, . \] (8)

At the equilibrium separation:

\[\left[\frac{dU_{\text{total}}}{dR} \right]_{R_0} = 0 \, , \]
\[\frac{-n N z A}{R_0^{n+1}} + \frac{q^2 N \alpha}{R_0^2} = 0 \Rightarrow \frac{z A}{R_0^n} = \frac{q^2 \alpha}{n R_0} \]

\[U(R_0) = \frac{N z A}{R_0^n} - \frac{q^2 N \alpha}{R_0} = -\frac{q^2 N \alpha}{R_0} \left(1 - \frac{1}{n} \right) \, . \] (10)

(b) Consider the Taylor expansion for \(U_i \), (we deal with \(U_i \) instead of \(U \), because we want to obtain the work done in compressing a unit length):

\[U_i(R_0 - \delta R_0) = U_i(R_0) - U'_i(R_0) \delta R_0 + \frac{1}{2} U''_i(R_0) \delta^2 R_0^2 + \ldots \] (11)

The work done is equal to

\[W = U_i(R_0 - \delta R_0) - U_i(R_0) = -U'_i(R_0) \delta R_0 + \frac{1}{2} U''_i(R_0) \delta^2 R_0^2 + \ldots \] (12)

Since in equilibrium \(U''_i(R_0) = 0 \),

\[W = U_i(R_0 - \delta R_0) - U_i(R_0) \simeq \frac{1}{2} U''_i(R_0) \delta^2 R_0^2 \, . \] (13)
\[
\left[\frac{d^2 U_i}{dR^2} \right]_{R_0} = \frac{n(n+1)zA}{R_0^{n+2}} - \frac{2q^2 \alpha}{R_0^3}.
\]

(14)

From the equilibrium condition we have found that

\[
\frac{zA}{R_0^3} = \frac{q^2 \alpha}{n R_0},
\]

(15)

\[
\left[\frac{d^2 U_i}{dR^2} \right]_{R_0} = \frac{(n+1)q^2 \alpha}{R_0^3} - \frac{2q^2 \alpha}{R_0^3} = \frac{(n-1)q^2 \alpha}{R_0^3}.
\]

(16)

The work \(W \) done is then equal to:

\[
W = \frac{\delta^2}{2} \frac{(n-1)q^2 \alpha}{R_0}.
\]

(17)