KOÇ UNIVERSITY

College of Arts and Sciences
 Department of Physics

Course: MATH503 Applied Mathematics
Credits: 3
Semester: Fall 2003
Instructor: Professor Tekin Dereli
Final Exam: 19 January 2004, 12.00-14.15

Question: $\mathbf{1}$ (20 points) Find the work done by the force $\vec{F}=x \ln y \vec{i}+2 y e^{x} \vec{j}$ when a body is taken along the boundary C of the rectangle $\{(x, y) \mid 0 \leq x \leq$ $2,1 \leq y \leq 2\}$ in the clockwise sense.

Solution: Green's theorem

$$
\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \vec{n} d A=\oint_{\partial S} \vec{F} \cdot d \vec{r} .
$$

We have $\vec{\nabla} \times \vec{F}=\left(2 y e^{x}-\frac{x}{y}\right) \vec{k}$ so that

$$
W=-\int_{0}^{2} d x \int_{1}^{2} d y\left(2 y e^{x}-\frac{x}{y}\right)=2 \ln 2-3\left(e^{2}-1\right) .
$$

Note the over-all minus sign since the integration is to be done in the clockwise sense.

Question: 2 (20 points) What is the conic section represented by the quadratic form $4 x_{1}^{2}+12 x_{1} x_{2}+13 x_{2}^{2}=16$. Determine its principal axes.
Hint: Write the quadratic form as $X^{T} A X$ where $X=\binom{x_{1}}{x_{2}}$ and $A=$ $\left(\begin{array}{cc}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ and diagonalize A.
Solution: We identify A from

$$
\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{cc}
4 & 6 \\
6 & 13
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

and diagonalize it:

$$
\left|\begin{array}{cc}
4-\lambda & 6 \\
6 & 13-\lambda
\end{array}\right|=0 .
$$

Eigenvalues are $\lambda_{1}=1, \lambda_{2}=16$. The corresponding eigenvectors

$$
X_{1}=\frac{1}{\sqrt{5}}\binom{2}{-1} \quad, \quad X_{2}=\frac{1}{\sqrt{5}}\binom{1}{2}
$$

give the pricipal axes $L_{1}: y=-\frac{1}{2} x$ and $L_{2}: y=2 x$. In the oblique coordinates (x, y) determined by these lines, our quadratic reads

$$
\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 16
\end{array}\right)\binom{x}{y}=x^{2}+16 y^{2}=16 .
$$

This is the equation of an ellipse.
Question: 3 (20 points) Write down a general solution of the differential equation $(\omega \neq 1)$

$$
y^{\prime \prime}+\omega^{2} y=\text { sint } .
$$

Solution: Given the solution

$$
y_{1}=A \cos \omega t+B \sin \omega t
$$

of the homogeneous equation and a particular solution

$$
y_{2}=\frac{1}{\left(\omega^{2}-1\right)} \sin t
$$

one can write down a general solution $y=y_{1}+y_{2}$.
Question: $\mathbf{4}$ (20 points) Find and plot all the values of

$$
(-8+i 8 \sqrt{3})^{\frac{1}{4}}
$$

Solution: We have $-8+i 8 \sqrt{3}=16 e^{i \frac{2 \pi}{3}}$ so that its 4 th roots are given by

$$
z_{n}=2 e^{i\left(\frac{\pi}{6}+n \frac{\pi}{2}\right)} \quad, n=0,1,2,3 .
$$

Explicitly we have $\sqrt{3}+i,-1+i \sqrt{3},-\sqrt{3}-i, 1-i \sqrt{3}$.

Question: 5 (20 points) Given the rational function

$$
f(z)=\frac{z}{z^{2}+4}
$$

i. find the zeroes and the poles of $f(z)$
ii. determine the residues at each pole
iii. integrate $f(z)$ counterclockwise along the simple closed path C : $|z|=3$.
Solution: $\quad f(z)=\frac{z}{(z-2 i)(z+2 i)}$ has one simple zero at $z_{0}=0$ and two simple poles at $z_{1}=2 i$ and $z_{2}=-2 i$. Using partial fractions we can write

$$
f(z)=\frac{1 / 2}{z-2 i}+\frac{1 / 2}{z+2 i} .
$$

Therefore by inspection we read off the residues at each pole

$$
\operatorname{Res}_{z=2 i}=1 / 2=\operatorname{Res}_{z=-2 i} .
$$

Contour $C:|z|=3$ encloses both the poles so that by the residue theorem

$$
\oint_{C} f(z) d z=2 \pi i \sum_{k=1}^{2} \operatorname{Res}_{z=z_{k}}=2 \pi i(1 / 2+1 / 2)=2 \pi i .
$$

