KOÇ UNIVERSITY
 College of Arts and Sciences
 Department of Physics

Course: PHYS401 Quantum Mechanics I
Credits: 3
Semester: Fall 2003
Instructor: Professor Tekin Dereli

1. Midterm Exam: 5 November 2003, 15.30-16.45, Z42

Question: 1 Suppose a particle is described by the wave function

$$
\psi(x, 0)=\frac{N}{x^{2}+a^{2}}
$$

i. Normalize $\psi(x, 0)$. That is determine N in terms of a.
ii. Sketch $|\psi(x, 0)|^{2}$ as a function of x.
iii. Where is the particle most likely to be found?
vi. What is the probability of finding the particle somewhere along the positive x -axis?
v. Calculate the expectation values $\langle x\rangle,\left\langle x^{2}\right\rangle$ and $\langle p\rangle$.

Question: 2 Consider a particle held in a one-dimensional, complex potential $V(x)(1+i \xi)$ where $V(x)$ is a real function of x and ξ is a real parameter.

Show that the probability density function $p(x, t)=|\psi(x, t)|^{2}$ and the probability current $j(x, t)=\frac{\hbar}{2 m i}\left(\psi^{*} \frac{\partial}{\partial x} \psi-\frac{\partial}{\partial x} \psi^{*} \psi\right)$ satisfy the probability continuity equation

$$
\frac{\partial}{\partial t} p+\frac{\partial}{\partial x} j=\frac{2 \xi}{\hbar} V(x) p
$$

Question: 3 The quantum state of a simple harmonic oscillator at time $t=0$ is given by the following superposition of stationary wave functions:

$$
\psi(x, 0)=N u_{1}(x)+\frac{1}{\sqrt{2}} u_{2}(x)-\frac{1}{\sqrt{3}} u_{3}(x) .
$$

i. Find the constant N so that $\psi(x, 0)$ is normalized. (Make use of the orthonormality of the stationary wave functions.)
ii. Determine $\psi(x, t)$ for any $t>0$.
iii. If the energy E is measured, write down the possible outcomes of this measurement together with their corresponding probabilities.
iv. Calculate the expectation value $\langle E\rangle$.

