Time-Optimal Control of Automobile Test Drives with Gear Shifts

Christian Kirches
Interdisciplinary Center for Scientific Computing (IWR)
Ruprecht-Karls-University of Heidelberg, Germany

joint work with

Sebastian Sager, Hans Georg Bock, Johannes P. Schlöder

International Workshop on Hybrid Systems
Koç University, Istanbul, Turkey
May 15, 2008
Outline of the Talk

1. Introduction
2. Physical Model of the Car
3. A Mixed-Integer Optimal Control Approach
4. Test-driving Scenarios & Computational Results
5. Final Remarks
Mixed-Integer Optimal Control (MIOC)

- Optimization of dynamic processes,
- Nonlinear stiff/non-stiff ODE/DAE models,
- Discrete and continuous controls,
- Nonlinear constraints.

Tasks

- Reduce infinite-dimensional MIOCP to NLP.
- Want to avoid MINLP: How to treat discrete controls?

Applications

- Chemistry, Bioinformatics, Engineering, Economics, ...
Introduction

Today’s Application

- Driver shall complete a prescribed track:
 - Time optimal, energy optimal, pareto, periodic, ...
- ODE model: Vehicle dynamics.
- Continuous decisions: Acceleration, brakes, steering wheel?
- Discrete decisions: When to select which gear?
- Constraints: Stay on track, control bounds, engine speed, ...

Christian Kirches, University of Heidelberg

Time-Optimal Automobile Test Drives with Gear Shifts
Forces

- \(F_{sf}, F_{lf}, F_{sr}, F_{lr} \): Side and lateral forces at front and rear tyre (Pacejka),
- \(F_{Ax}, F_{Ay} \): Accelerating forces attacking car’s c.o.g.

Coordinates

- \(x, y \) Global coordinate system,
- \(e_{SP} \) Displacement of car’s center of gravity,
- \(c_x, c_y \) Car body’s geometric center,
- \(\psi \) Angle of longitudinal axis against global ordinate.
Angles

- α_f: Front wheel’s direction of movement against longitudinal axis,
- α_r: Rear wheel’s direction of movement against longitudinal axis,
- β: Car’s direction of movement against longitudinal axis,
- δ: Steering wheel angle against longitudinal axis.
Velocities

- \(v_f, v_r \) Front and rear wheel’s velocity into directions \(\alpha_f, \alpha_r \),
- \(\nu \) Car’s velocity into direction \(\beta \).
Controls

- $\dot{\delta}$ in $[-0.5, 0.5] \subset \mathbb{R}$: Time derivative of steering wheel angle,
- ϕ in $[0, 1] \subset \mathbb{R}$: Pedal position, translates to engine torque M_{eng},
- F_{brk} in $[0, 1.5 \cdot 10^4] \subset \mathbb{R}$: Braking force.

- μ in $\{1, 2, 3, 4, 5\} \subset \mathbb{Z}$: Selected gear, translates to gearbox transm. ratio i^μ_g.

Model part relevant for μ: Rear wheel drive

$$F^\mu_{lr} := \frac{i^\mu_g i_r}{R} M^\mu_{\text{eng}}(\phi, w^\mu_{\text{eng}}) - F_{\text{Br}} - F_{\text{Rr}},$$

$$M^\mu_{\text{eng}}(\phi, w^\mu_{\text{eng}}) := \text{some nonlinear function of } \phi \text{ and engine speed } w_{\text{eng}} \text{ in gear } \mu.$$
Optimal Control Problem

- ODE states trajectory $x(\cdot)$, control functions $u(\cdot)$,
- Free final time t_f and global parameters p.

Optimal Control Problem Class
Discretization Grid

Select a partition of the time horizon \([t_0, t_f]\) into \(m - 1\) intervals

\[
t_0 < t_1 < \ldots < t_{m-1} < t_m = t_f.
\]

Control Discretization

Select \(n_q\) base functions \(b_j : \mathbb{R} \rightarrow \mathbb{R}^{n_u}\). Using control parameters \(q \in \mathbb{R}^{n_q}\), let for all \(0 \leq i \leq m - 1\)

\[
u_i(t) := \sum_{j=1}^{n_q} q_{ij} b_{ij}(t) \quad \forall t \in [t_i, t_{i+1}]
\]

Choices: Piecewise constant/linear/cubic splines, continuity by external constraints.
Bock’s Direct Multiple Shooting Method: States

State Discretization

Introduce initial states s_i for $0 \leq i \leq m - 1$ and solve m IVPs

\[
\dot{x}_i(t) = f(t, x_i(t), q_i, p) \quad \forall t \in [t_i, t_{i+1}]
\]

\[
x_i(t_i) := s_i
\]

\[
s_{i+1} = x(t_{i+1}; t_i, s_i, q_i, p)
\]

Advantages

- Existence of solution of IVP,
- Improve condition of BVP,
- Distribute nonlinearity,
- Supply additional a-priori information using the s_i,
- Use state-of-the-art adaptive ODE/DAE solver with IND.
Bock’s Direct Multiple Shooting Method: Discrete NLP

Optimal Control NLP

\[
\begin{align*}
\min_{t_f, s_i, q_i, p} & \quad \phi(t_f, s_m, p) \\
\text{s.t.} & \quad \dot{x}_i(t) = f(t, x_i(t), q_i, p) \quad \forall t \in [t_i, t_{i+1}] \forall i \\
& \quad 0 = s_{i+1} - x_i(t_{i+1}; t_i, s_i, q_i, p) \quad \forall i \\
& \quad 0 = r^{eq}(t_0, x_0, q_0, \ldots, t_m, x_m, q_m, p) \\
& \quad 0 \leq r^{in}(t_0, x_0, q_0, \ldots, t_m, x_m, q_m, p)
\end{align*}
\]

\(x_i(t_{i+1}; t_i, s_i, q_i, p)\) denotes end point of solution of IVP \(i\) depending on initial values of \(t_i, s_i, q_i,\) and \(p.\)
Bock’s Direct Multiple Shooting Method: Solution of NLP

Exploiting Structure

- Partial separability of objective,
- Can evaluate intervals in parallel,
- Block sparse jacobians and Hessians,
- High-rank updates to Hessian (modified L-BFGS).

Solution of NLP by structured SQP method

- Reduce NLP to size of single shooting system,
- Dense active-set QP solvers: QPSOL, QPOPT, qpOASES, ...
Mixed-Integer Optimal Control Problem Class

Optimal Control Problem

\[
\begin{align*}
\min_{t_f, x(\cdot), u(\cdot), \omega(\cdot), p} & \quad \phi(t_f, x(t_f), p) \\
\text{s.t.} & \quad \dot{x}(t) = f(t, x(t), u(t), \omega(t), p) \quad \forall t \in [t_0, t_f] \\
& \quad 0 \leq c(t, x(t), u(t), \omega(t), p) \quad \forall t \in [t_0, t_f] \\
& \quad 0 = r^{eq}(t_1, x(t_1), \ldots, t_m, x(t_m), p) \\
& \quad 0 \leq r^{in}(t_1, x(t_1), \ldots, t_m, x(t_m), p) \\
& \quad u(t) \in U \subset \mathbb{R}^{n_u} \quad \forall t \in [t_0, t_f] \\
& \quad \omega(t) \in \Omega \subset \mathbb{R}^{n_\omega} \quad \forall t \in [t_0, t_f]
\end{align*}
\]

\[\Omega := \{\omega^1, \omega^2, \ldots, \omega^{n_\omega}\} \subset \mathbb{R}^{n_\omega} \text{ is a finite set of control choices, } |\Omega| < \infty.\]
Inner Convexification for Integer Controls

Let Ω be the finite set of all control choices.
Relax $\omega(t) \in \Omega$ to $w(t) \in \text{conv } \Omega \subset \mathbb{R}^{n_\omega}$.

Effects

+ Same number of controls n_ω.
+ Dense QPs solvers faster, less active set changes.
 - Model must be evaluable & valid for potentially nonintegral $w(t)$.
 - How to reconstruct integral choice $\omega^*(t)$ from relaxed $w^*(t)$?
Outer Convexification for Integer Controls

Outer Convexification

For all t and for each member $\omega^i \in \Omega \subset \mathbb{R}^{n_\omega}$ introduce $w_i(t) \in \{0, 1\}$. Let then

$$\omega(t) := \sum_{i=1}^{n_w} \omega^i w_i(t), \quad 1 = \sum_{i=1}^{n_w} w_i(t) \quad (SOS1)$$

Relax all $w_i(t) \in \{0, 1\}$ to $w_i(t) \in [0, 1] \subset \mathbb{R}$ to obtain choice $\omega(t)$.

Effects

- Increased number of controls $n_w = |\Omega|$ instead of n_ω.
- Model can rely on integrality of the fixed evaluation points ω^i.
- Relaxed solution often bang-bang in $w_i(t)$, thus integer.
- If not, SUR-0.5 as ε-approximative scheme.
Avoiding an Obstacle

- Start to the left, driving straight ahead at 10 km/h.
- Complete track in a time-optimal fashion.
- Predefined evasive manoeuvre to avoid obstacle.
Avoiding an Obstacle: Initialization

- Example: 40 multiple shooting nodes.
Avoiding an Obstacle: Solution

- Example: 40 multiple shooting nodes.
- Differential state trajectories:

![Differential State Function 0]
![Differential State Function 1]
![Differential State Function 2]
![Differential State Function 4]

- Control trajectories:

![Control Function 0]
![Control Function 3]
![Control Function 4]
![Control Function 5]
![Control Function 6]
Avoiding an Obstacle: Constraint Discretization

- Example: 10, 40, and 80 multiple shooting nodes.
Why is it integer?

- Maximum indicated engine torque depending on velocity.
Computation Times

<table>
<thead>
<tr>
<th>N</th>
<th>t_f</th>
<th>hh:mm:ss</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>not given</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>6.779751</td>
<td>00:23:52</td>
</tr>
<tr>
<td>40</td>
<td>6.786781</td>
<td>232:25:31</td>
</tr>
<tr>
<td>80</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

[Branch & Bound] [M. Gerdts, 2005] on a P-III 750 MHz

<table>
<thead>
<tr>
<th>N</th>
<th>t_f</th>
<th>hh:mm:ss</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>6.798389</td>
<td>00:00:07</td>
</tr>
<tr>
<td>20</td>
<td>6.779035</td>
<td>00:00:24</td>
</tr>
<tr>
<td>40</td>
<td>6.786730</td>
<td>00:00:46</td>
</tr>
<tr>
<td>80</td>
<td>6.789513</td>
<td>00:04:19</td>
</tr>
</tbody>
</table>

[Outer Convexification] [K. et al., 2008] on an Athlon 2166 MHz
Racing on an ellipsoidal track

- Ellipsoidal track of 340m x 160m,
- Width of 5 car widths,
- Find time-optimal periodic solution.
Racing on an ellipsoidal track: Solution

Differential state trajectories:

Control trajectories:
Racing on an ellipsoidal track: Solution
Future Work

More complicated tasks
- More complicated circuits (think Istanbul Park, Hockenheimring, ...);
 requires slight modification of model & coordinate system.
- More detailed modelling of integer decision effects.

More sophisticated techniques
- For longer tracks: use a moving horizon optimization technique.
- Closed-loop offline optimization.
- Closed-loop online optimization with an industry partner.

Real-time Feasibility
- Computation for reasonable discretization quite fast.
- Active set QP can solve a sequence of related problems at cheap additional cost.
References

Thank you for your attention.

Questions?