Constrained and Distributed Optimal Control

Francesco Borrelli

University of California
Berkeley, USA
Challenges

Hybrid Control Design
&
Distributed Control for Large Scale Systems
Challenges

Hybrid Control Design

Switched Linear Systems
Constraint Satisfaction
At high level: Constrained Switched Linear System
External Switch Selects Mode of Operation
OAV Autonomous Flight

Objective
Follow given trajectories.
Waypoints= [Time,Space]

Model
Switched Linear – External Switch

Constraints
Speed and acceleration function of mode
Vehicle Dynamics Control

A driver aid for atypical road conditions, such as slippery, windy and bumpy roads

Nonlinear (Piece-wise linear) and Constrained System

- Traction Control (TC)
- Anti-lock Braking System (ABS)
- Electronic Stability Program (ESP)
- Active Front Steering (AFS) systems
- Active Suspension systems
- Active differential systems
Vehicle Dynamics Control

A driver aid for atypical road conditions, such as slippery, windy and bumpy roads

- Traction Control (TC)
- Anti-lock Braking System (ABS)
- Electronic Stabilty Program (ESP)
- Active Front Steering (AFS) systems
- Active Suspension systems
- Active differential systems

Nonlinear (Piece-wise linear) and Constrained System
Integrated VDC via MPC

MIMO controller integrating local and global measurements coming from GPS, cameras, infrared and radar

- Front steering
- Four brakes
- Engine torque
- Active suspensions
- Active differential

Controlling Yaw, Roll, Pitch, Vertical, Lateral and Longitudinal Dynamics via Multiple Input

Enabling path following capabilities

Falcone, Kevizky, Borrelli from 2003 to today

- Longitudinal, lateral and vertical velocity/accelerations
- Yaw, roll and pitch angles/rates
- Position and velocity in a global frame

Davor Hrovat, Jahan Asgari, Eric Tseng, Mike Fodor

Ford Motor Company
Chameleon Visual Tracking

Objective

Tracking of a moving prey

Model

PTZ camera: Linear
Prey: Linear point mass

Constraints

Pan Tilt and Zoom constraints
Prey in tracking window \forall unknown bounded accelerations
Common Problem Features

- **Objective**
 - Minimization of performance index
- **Models**
 - Linear, Uncertain
 - Switched-Linear, Uncertain
- **Constraints**
 - States and Inputs
Solved Problem ~ 40 years ago

- **Objective**
 - Minimization of performance index
- **Models**
 - Linear, Uncertain
 - Switched-Linear, Uncertain
- **Constraints**
 - States and Inputs
Focus of Research ~ 10 years ago

- **Objective**
 - Minimization of performance index

- **Models**
 - Linear, Uncertain
 - Switched-Linear, Uncertain

- **Constraints**
 - States and Inputs

Balluchi, Bemporad, Di Benedetto, Goodwin, Johansen, Johansson, Kerrigan, Maciejowski, Mayne, Morari, Pappas, Rantzer, Rawlings, Sangiovanni-Vincentelli, Sastry, Sontag, Tomlin, …. and many others.
Hybrid Constrained Optimal Control

\[
\min_U \sum_{k=0}^{N} ||Qx(k)||_p + ||Ru(k)||_p
\]

subject to

\[
x(k+1) = A_i x(k) + B_i u(k) + f_i \\
\text{if } [x(k), u(k)] \in X_i, \; i = 1, \ldots, s
\]

\[
Ex(k) + Lu(k) \leq M, \; k = 0, 1, 2, \ldots
\]

\[
x(k) \in \mathbb{R}^n \times \{0, 1\}^{n_b}, \; u(k) \in \mathbb{R}^m \times \{0, 1\}^{m_b}, \; U \triangleq \{u(0), u(1), u(2), \ldots\}
\]

- Understanding solution structures and properties
- Solution computational methods and tools
Hybrid Constrained Optimal Control

Borrelli from 1999 to 2004

\[
\min_U \sum_{k=0}^{N} ||Qx(k)||_p + ||Ru(k)||_p
\]

subj.to \(x(k+1) = A_ix(k) + B_iu(k) + f_i \)
\(\text{if } [x(k), u(k)] \in \mathcal{X}_i, \ i = 1, \ldots, s \)
\(Ex(k) + Lu(k) \leq M, \ k = 0, 1, 2, \ldots \)

\[x(k) \in R^n \times \{0, 1\}^{n_b}, \ u(k) \in R^m \times \{0, 1\}^{m_b}, \ U \triangleq \{u(0), u(1), u(2), \ldots\} \]

- **Understanding solution structures and properties**
- **Solution computational methods and tools**
Characterization of the Solution \((p=1,2,\infty)\)

Borrelli et al, ACC, 2000
Borrelli et al, AUTOMATICA, 2005

The solution to the optimal control problem is a time varying PWA state feedback control law of the form

\[
 u^*(k)(x) = \begin{cases}
 F_1(k)x + G_1(k) & \text{if } x \in CR_1(k) \\
 \vdots & \vdots \\
 F_R(k)x + G_R(k) & \text{if } x \in CR_R(k)
\end{cases}
\]

\(\{CR_i\}_{i=1}^{R}\) is a partition of the set of feasible states \(x(k)\).

- **p=1, p=\infty:**
 \[CR_i(k) \triangleq \{x : M_i(j, k)x \leq K_i(j, k)\}\]

- **p=2:**
 \[CR_i(k) \triangleq \{x : x'L_i(j, k)x + M_i(j, k)x \leq K_i(j, k)\}\]
Hybrid Constrained Optimal Control

\[
\min_U \sum_{k=0}^{N} \|Qx(k)\|_p + \|Ru(k)\|_p
\]

subj.to \[x(k+1) = A_i x(k) + B_i u(k) + f_i \]
\[\text{if } [x(k), u(k)] \in \mathcal{X}_i, \ i = 1, \ldots, s\]
\[Ex(k) + Lu(k) \leq M, \ k = 0, 1, 2, \ldots\]

\[x(k) \in \mathbb{R}^n \times \{0, 1\}^{n_b}, \ u(k) \in \mathbb{R}^m \times \{0, 1\}^{m_b}, \ U \triangleq \{u(0), u(1), u(2), \ldots\}\]

- Understanding solution structures and properties
- Solution computational methods and tools
Computational Flow

Problem Setup → Invariant set computation

Reachability Analysis → Polyhedral set manipulation

Local parametric problems → Multiparametric LP/QP

Solution postprocessing → LMI and polyhedral set manipulation

$u^* = f_{PWA}(x)$

Dynamic Programming

Google: mpt toolbox

Borrelli et al, JOTA, 2003
Borrelli et al, AUTOMATICA, 2006
Baotic, Borrelli et al, SICON, 2007
Summary

Systematic Model-Based Control Design
MIMO, PWA, Constraints, Logics

- Piecewise affine state feedback control law
- Off-line computation:
 Automatic partitioning and control law synthesis
- On-line computation: Lookup Table Evaluation
- Extended to Min-Max Constrained Problems

Borrelli, Bemporad, Morari, TAC, 2003
MPC Algorithm

\[
\min_{U} J(U, x(0)) \triangleq \sum_{k=0}^{N-1} \| Q(x(k) - x_{\text{ref}}) \|_p + \| R(u(k) - u_{\text{ref}}) \|_p
\]

subj. to \[
\begin{align*}
\{ & x(k+1) = f(x(k), u(k)) \\
& u(k) \in U \\
& x(k) \in X \\
& x(0) = x(t)
\end{align*}
\]

At time t:
• Measure (or estimate) the current state \(x(t) \)
• Find the optimal input sequence \(U^* \triangleq \{ u^*(t), u^*(t+1), \ldots, u^*(t+N) \} \)
• Apply only \(u(t) = u^*(t) \), and discard \(u^*(t+1), u^*(t+2), \ldots \)

Repeat the same procedure at time \(t+1 \)
Important Issues in Model Predictive Control

Even assuming perfect model, no disturbances:

\[
\text{predicted open-loop trajectories} \neq \text{closed-loop trajectories}
\]

- Feasibility
 Optimization problem may become infeasible at some future time step.

- Stability
 Closed-loop stability is not guaranteed.

- Performance
 Goal: \(\min \sum_{i=0}^{\infty} L(x(k+i), u(k+i)) \)
 What is achieved by repeatedly minimizing \(\sum_{i=0}^{N-1} L(x(k+i), u(k+i)) \)
Feasibility and Stability Constraints

$$\min_{U} J(U, x(0)) \triangleq P(x(N)) + \sum_{k=0}^{N-1} \| Q x(k) \|_p + \| R u(k) \|_p$$

subj. to \[
\begin{cases}
 x(k + 1) = f(x(k), u(k)) \\
 u(k) \in U \\
 x(k) \in \mathcal{X} \\
 x(0) = x(t) \\
 x(N) \in \mathcal{X}_f
\end{cases}
\]

X_f is an Invariant Set

$P(x)$ is a Control Lyapunov Function.
Chameleon Visual Tracking

Objective
Tracking of a moving prey

Model
PTZ camera: Linear
Prey: Linear point mass

Constraints
Pan Tilt and Zoom constraints
Prey in tracking window \(\forall \) unknown bounded accelerations
Min-Max Predictive Control

\[
J^*_j(x_j) = \min_{u_j} J_j(x_j, u_j)
\]

subj. to \[
\begin{cases}
\text{Model} \\
\text{Constraints}
\end{cases}
\]

\[
J_j(x_j, u_j) = \max_{v_j, w_j} \left(\|Qx_j\|_p + \|Ru_j\|_p + V^*(x_{j+1}) \right)
\]

Model: \[
x_{j+1} = A(w_j)x_j + B(w_j)u_j + Ev_j
\]

Uncertainty: Additive \(v_i \in \mathcal{V} \), Polytypic \(w_i \in \mathcal{W} \)

Constraints: \[
Fx_j + Gu_j \leq f \quad \text{For all } v_i \in \mathcal{V}, w_i \in \mathcal{W}
\]
Addressing Feasibility: Control Law Design

- **Smooth Pursuit Control**
- **Min-Max Predictive Control**
- **Saccade Control**
- **Minimum Time Predictive Control**

Graph showing:
- **y- Tracking Error**
- **x- Tracking Error**
- **Reach set**
- **Scanning Algorithm**
Robotic Chameleon Video

Avin, Borrelli et al., IROS, 2006

Explicit Min-Max MPC Solved at 50Hz
Vehicle Dynamics Control

A driver aid for atypical road conditions, such as slippery, windy and bumpy roads

- Traction Control (TC)
- Anti-lock Braking System (ABS)
- Electronic Stabilty Program (ESP)
- Active Front Steering (AFS) systems
- Active Suspension systems
- Active differential systems

Nonlinear (Piece-wise linear) and Constrained System
Traction Control Experiment

2000 Ford Focus, 2.0l 4-cyl Engine, 5-speed Manual Trans

Borrelli et al., IEEE TCST, 2006

"..Traction control on the V-6 test car was just right -- perhaps unique in all the industry…."
Integrated VDC via MPC

MIMO controller integrating local and global measurements coming from GPS, cameras, infrared and radar

- Front steering
- Four brakes
- Engine torque
- Active suspensions
- Active differential

Controlling Yaw, Roll, Pitch, Vertical, Lateral and Longitudinal Dynamics via Multiple Input

Enabling path following capabilities

Davor Hrovat, Jahan Asgari, Eric Tseng, Mike Fodor

Kevizky, Falcone, Borrelli from 2003 to today
Vehicle Model - 11 States, 6 Inputs

Inputs
\[\delta_f \] Front steering angle
\[F_b \] FL, FR, RL, RR brakes
\[\tau \] Desired engine torque

States
\[\dot{y} \] Lateral velocity
\[\dot{x} \] Longitudinal velocity
\[\psi \] Yaw angle
\[\dot{\psi} \] Yaw rate
\[\gamma \] Lateral position (I.F.)
\[X \] Longitudinal position (I.F.)

\[x = [y, \dot{y}, \dot{x}, \psi, \dot{\psi}, Y, X, \omega_{fl}, \omega_{fr}, \omega_{rl}, \omega_{rr}] \]
Pacejka Tire model

\[F = f(\alpha, s, \mu, F_z) \]
Autonomous Vehicle Tests and Experimental setup

Objective
- Minimize angle and lateral distance deviations from reference trajectory
- Double lane change
- Driving on snow/ice, at different entry speeds

System
- Jaguar X-type
- dSpace rapid prototyping system equipped with a DS1005 processor board Sampling time: 50 ms
- Differential GPS, gyros, lateral accelerometers
Acknowledgements

• University of Minnesota (Minneapolis, USA)
 - Tamas Keviczky, Gary Balas

• Unisannio (Benevento, Italy)
 - Paolo Falcone

• Honeywell Labs (Minneapolis, USA)
 - Dharmashankar Subramanian, Kingsley Fregene, Datta Godbole
 - Sonja Glavaski, Greg Stewart, Tariq Samad

• Ford Research Labs (Dearborn, USA)
 - Jahan Asgari, Eric Tseng, Davor Hrovat

• Technion (Haifa, Israel)
 - Ofiv Avni, Gadi Katzirinst, Ehud Rivlin, Hector Rotstein

• ETH (Zurich, Switzerland)
 - Mato Baotic, Alberto Bemporad, Manfred Morari