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Abstract

Class cover catch digraphs arise in classification problems in statistical pattern
recognition. We prove a strong law of large numbers for the domination number in a
random one-dimensional model of class cover catch digraphs. The proof avoids compli-
cated computations due to the dependence of random variables by considering a related
Poisson process problem where we may apply classical strong law results and Chernoff
exponential probability bounds. Complete convergence in the Poisson representation
establishes the desired result for the original problem.

Keywords - class cover problem, catch digraphs, domination, Poisson process, complete

convergence, strong law of large numbers, classification, pattern recognition

1 Introduction

Consider a vector space Ω, a dissimilarity d, and two finite, non-empty sets, X,Y ⊂
Ω. Recall that a dissimilarity d on Ω is a function d : Ω× Ω → < such that d(i, j) =
d(j, i) ≥ d(i, i) = 0 [CF94]. We refer to X = {x1, . . . , xn} as the target class and
Y = {y1, . . . , ym} as the non-target class. The general class cover problem (CCP) is to
find a minimum cardinality set of balls whose union contains all of the set X and no
points in Y . For each xi ∈ X we define a covering ball Bi = {z ∈ Ω : d(z, xi) < ri}
where ri = min{d(y, xi) : y ∈ Y }. We define a cover of the target class, X, as a set of
covering balls C such that ∀x ∈ X, ∃B ∈ C such that x ∈ B. The CCP we consider is
to find the minimum cardinality cover of X or more formally,

min







|J | : J ⊂ [n], X ⊂
⋃

j∈J

Bj







(1)

∗devinney@mts.jhu.edu - Supported in part by Office of Naval Research Grant N00014-01-1-0011
†Supported by a Navy-American Society for Engineering Education sabbatical fellowship

1



where the notation [n] stands for the set {1, 2, . . . , n}. Note that by this definition each
covering ball is centered at an element of X and the cover cannot contain any elements
of Y .

A directed graph D = (V,A) consists of a set V of vertices and a set A of arcs
which are ordered pairs of vertices. The catch digraph induced by a collection of sets
S = {S1, S2, . . . , Sn} and corresponding base points T = {T1, T2, . . . , Tn} is the digraph
with vertex set V = {v1, v2, . . . , vn} and an arc from vi to vj if and only if Tj ∈ Si (see
[MM99]). We call the catch digraph induced by the collection of Bi and their centers
xi the class cover catch digraph (CCCD) induced by (Ω, X, Y, d).

A dominating set of a directed graph D = (V,A) is a set of vertices S ⊂ V such that
for any v ∈ V , either v ∈ S or ∃w ∈ S : (w, v) ∈ A. We denote the size of a minimum
cardinality dominating set of a digraph D as γ(D). Let J be a collection of indices such
that {Bj : j ∈ J} is a solution to some CCP. Then the set {vj : j ∈ J} is a minimum
cardinality dominating set in the CCCD induced by that CCP and vice versa. The CCP
on (Ω, X, Y, d) is therefore equivalent to finding a minimum cardinality dominating set
in the CCCD induced by (Ω, X, Y, d). Determining the size of a minimum cardinality
dominating set in a general graph (or digraph) is NP-Hard [HHS98]. This does not
immediately imply that the CCP is NP-Hard since we have not characterized which
digraphs are CCCD’s. This topic is more thoroughly covered in [CEHS02] and [DP02].

If X and Y are sets of independent identically distributed observations drawn from
the class conditional distributions FX and FY respectively, then we have a randomized
version of the CCP. We define the random variable Γn,m(FX , FY ) as the size of a
minimum cardinality dominating set in a random CCCD induced by n observations
from FX and m observations from FY , all stochastically independent. We are interested
in the properties of the probability distribution of Γn,m(FX , FY ).

The CCP is motivated by supervised pattern classification (see [KLV98]). The cover
can be used to provide a simple estimate of the discriminant region for the target class.
Priebe, DeVinney, Marchette and Socolinsky [PMDS02] give the details of how this
estimate can be achieved using the CCP. By switching the role of target class between
the classes of observations, two different instances of the CCP can be solved, resulting
in two covers CX and CY . A simple classifier g : Ω → {0, 1, 2} obeys the following rule:

g(z) =







1 : z ∈ CX ∩ Cc
Y

2 : z ∈ CY ∩ Cc
X

0 : otherwise

where g(x) = 0 indicates no decision. More elaborate methods of applying the CCP to
classification are presented in [PMDS02].

The CCP was introduced by Cannon and Cowen [CC00]. They study a variation
of the CCP in which the radii of the covering balls must all be the same. Cannon and
Cowen construct a polynomial time approximation algorithm for this CCP. Priebe,
DeVinney and Marchette [PDM02] consider the one-dimensional CCP (Ω = < and d

is the euclidean metric) and find the exact distribution of Γn,m(FX , FY ) when FX =
FY = U [0, 1], where U [0, 1] is the uniform distribution on the interval [0, 1].
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2 One Dimensional CCP

We consider the special case of the CCP where Ω = <, d is the euclidean metric
and FX = FY = U [0, 1]. Since we will only consider the case where FX = FY = U [0, 1],
we may simplify notation and denote Γn,m(FX , FY ) as Γn,m. It will be convenient
to write Γn,m as the sum of m + 1 random variables which correspond to intervals
between succesive non-target class points. Let the random variable ni, be the number
of X points located between Y(i) and Y(i+1) (where Y(j) is the jth order statistic of
the points in Y , with Y(0) = 0 and Y(n+1) = 1). Let the random variable αi be the
minimum number of covering balls needed to cover the ni points of X located between
Y(i) and Y(i+1). Then we have

m
∑

i=0

αi = Γn,m. (2)

It will be useful to distinguish αi for i = 1, 2, . . . ,m− 1 as the internal components
and α0 and αm as external components. Priebe, DeVinney and Marchette [PDM02]
calculate the exact distribution of the αi. This result is summarized in Lemma 1.

Lemma 1. If FX = FY = U [0, 1] then the following are true.
(i) For i ∈ {0, 1, . . . ,m}, if ni = 0 then αi = 0.
(ii) For i ∈ {0,m}, if ni > 0 then αi = 1.
(iii) For i ∈ {1, 2, . . . ,m− 1}, if ni = k, k > 0 then

P [αi = 1|ni = k] = 1− P [αi = 2|ni = k] =
5

9
+

4

9

1

4k−1
.

We see that αi ∈ {0, 1, 2} for i = 0, 1, . . . ,m. 1

3 Main Result

This article extends the results of Priebe, DeVinney and Marchette for Γn,m. We
prove the following Strong Law of Large Numbers:

Theorem 1. For a ∈ (0,∞),

lim
n→∞

Γbanc,n

n
=

a(13a + 12)

3(a + 1)(3a + 4)
a.s., (3)

where banc is the greatest integer less than or equal to an.

The theorem is stated in terms of the average of the internal components, which
corresponds most closely to the usual strong law of large numbers. Note that the
limiting expression is an increasing function of a, the ratio of numbers of target class
and non-target class points. As a → 0, the limiting expression converges to zero,
reflecting the fact that most intervals between sucessive Y points will contain no X

point. More interestingly, as a → ∞, the limiting expression converges to 13
9 . This

corresponds to each interval between sucessive Y points containing a large number of

1The fact that αi ∈ {0, 1, 2} for i = 0, 1, . . . , m is actually a property of the one-dimensional CCP and
holds for all distributions FX and FY .
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X points. By Lemma 1, the probability that one ball covers all points in this interval is
near 5

9 and the probability that two balls are needed is near 4
9 , resulting in an expected

value of 13
9 .

Alternatively, one may consider normalizing by the number of X points. In this

case we see limn→∞
Γbanc,n

banc = 13a+12
3(a+1)(3a+4) a.s. The limiting expression now converges

to zero as a → ∞ and to one as a → 0. The quantity
Γbanc,n

banc gives a measure of the
reduction in complexity resulting from using the dominating set as a representation for
the entire target class.

4 Sketch of Proof

For clarity of presentation we will prove the special case of the main theorem where
a = 1, showing that

Γn,n

n
→ 25

42 a.s. The proof is outlined in this section with details
presented in Section 5. A description of the modifications necessary to prove the general
case, m = an, is presented in Section 6.

Note that there are only two external components and that their value is bounded
above by one, so the asymptotic behavior of Γn,n is determined by the internal com-
ponents. The ni depend on the lengths (Y(i), Y(i+1)) which are identically distributed
implying that the ni are identically distributed. This fact and Lemma 1 imply that the
internal components are identically distributed. However, the αi are not independent
random variables. Due to this dependence we cannot apply the standard strong law
of large numbers. Attempts to compute higher moments have resulted in complicated
expressions which have not been useful in establishing convergence. We circumvent
this problem with an approach that establishes the strong law of large numbers for the
cardinality of a solution of a CCP in a Poisson process setting. We then transfer the
result back to the original setting.

For a Poisson process W we let Wi denote the time of the ith arrival and W (t)
as the number of arrivals in W before time t. Consider two one-dimensional Poisson
processes, A and B, with common rate λ with 0 < λ < ∞. Points of A will play the
role of target class points and points in B will play the role of non-target class. We let
Xi be the number of A points in (Bi, Bi+1) and ρi be the minimum number of covering
balls needed to cover the Xi points of A in (Bi, Bi+1).

We consider Γ′n, defined as the solution to the CCP on the points of A and B

in (0, Bn+1). This CCP has exactly n non-target class points and a random number,
Nn = A(Bn+1), of target class points. It has an advantage over our original CCP; the ρi

(analogous to the internal and external components) are independent random variables,
allowing the application of the standard Strong Law of Large Numbers with fourth
moment assumptions. A simple calculation in this Poisson process setting evaluates
the limit as 25

42 .
Using the conditional uniformity property of Poisson processes, and a standard

density transformation result, we see that the Nn points of A and the n points of B

have the same distribution as the order statistics of Nn + n observations of a uniform
distribution on (0, Bn+1). Rescaling the interval (0, Bn+1) to (0, 1) does not change
the value of Γ′n. For each n, we correct the number of target class points as follows: If
Nn < n, we add n−Nn points A′

1, A
′
2, . . . , A

′
n−Nn

which are uniformly distributed on
(0, 1), mutally independent and independent of the Poisson processes. If Nn > n, we
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choose a random subset of Nn − n points from {A1, A2, . . . , ANn
} with all subsets of

size Nn − n equally likely, to remove from consideration. We then calculate a revised
CCP solution with cardinality Γn on this corrected set of points. The random variable
Γn in the Poisson process setting has an identical distribution with Γn,n in the original
setting.

Adding or removing a target class point affects the solution of the one-dimensional
CCP by at most one. The number of points to be added or removed, Nn − n, form a
random walk that arises naturally from the Poisson processes A and B. The fluctua-
tions in the random walk are sufficiently small that the effect of adding or removing
points is negligible in the limit. Combining these ideas, we show that the almost sure

limits of Γ′
n

n
and Γn

n
are identical.

To transfer the result from Γn in the modified Poisson process setting to Γn,n in the
original setting, there is one additional complication to overcome. While the marginal
distributions of Γn and Γn,n are identical for each n, the joint distributions of {Γn; n =
1, 2, . . .} and {Γn,n; n = 1, 2, . . .} are not due to the adding or removing of different
sets of points for each n. However, if care is taken to demonstrate complete covergence
for Γn, we obtain complete covergence (and therefore almost sure covergence) for Γn,n.

5 Proof

In this section we provide the details to complete the proof sketch in the previous
section.

5.1 Poisson Representation

For proving a limiting result, we find it useful to convert the model from one in
which uniformly distributed points are added to a fixed interval, into a model where
the limit corresponds to increasing the length of the interval. As mentioned above, we
use a correspondence between uniformly distributed points and a Poisson process.

We rely upon two standard distributional results. First, from an undergraduate-
level density transformation exercise, if X1, X2, . . . , Xn+1 are independent identically-
distributed random variables with an Exponential distribution with parameter λ, then

(

X1
∑n+1

i=1 Xi

,
X1 + X2
∑n+1

i=1 Xi

,
X1 + X2 + X3
∑n+1

i=1 Xi

, ...,

∑n
i=1 Xi

∑n+1
i=1 Xi

)

has the same joint distribution as the order statistics of n independent Uniform[0,1]
random variables. Secondly, recall the “conditional uniformity” property of Poisson
processes: If W (t) = n, then the n Poisson points on [0, t] conditionally have the same
distribution as the order statistics of n independent Uniform[0, t] random variables.

We consider the B process on (0, Bn+1). By the first property above, the first n

points in the B process may be considered to be uniformly distributed on (0, Bn+1).
At time Bn+1, there is a random number of A points, Nn. If we further condition
on Nn = m, then both A and B points are uniformly distributed on (0, Bn+1). By
rescaling the interval, the class cover problem on A1, A2, . . . , Am and B1, B2, . . . , Bn is
equivalent to the CCP on A1

Bn+1
, A2

Bn+1
, . . . , Am

Bn+1
and B1

Bn+1
, B2

Bn+1
, . . . , Bn

Bn+1
. Therefore,

in the case where we stop the B process at Bn+1 and condition on N = m, the size of
the solution to the CCP on the A and B points has the same distribution as Γm,n.
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5.2 Expected Value of Internal Components

For now, we return to observing the Poisson processes in (0, Bn+1). Recall that
we let Γ′n represent the size of a solution to the CCP on A1, . . . , ANn

and B1, . . . , Bn.
Also Xi is the number of A points in (Bi, Bi+1) and ρi is the minimum number of
covering balls needed to cover the Xi points of A in (Bi, Bi+1). We proceed by showing
E[ρi] = E[ρ1] = 25

42 ∀i ∈ {1, . . . n − 1}. By the lack of memory property of the
exponential distribution, Xi = Z − 1 where Z is a geometric random variable with
parameter p = 1

2 . By conditional uniformity, and Lemma 1 we see that the ρi depend
only on the value of Xi. Therefore since the Xi are identically distributed [Dav81], ρi

for i ∈ {1, 2, . . . , n− 1} are also identically distributed. We now calculate E[ρ1].

P [ρ1 = 0] = P [X1 = 0] =
1

2

and

P [ρ1 = 1] =
∞
∑

k=1

P [ρ1 = 1|X1 = k]P [X1 = k] (4)

=

∞
∑

k=1

[

5

9
+

(

4

9

)

41−k

]

1

2k+1

=
5

9

∞
∑

k=1

2−(k−1) +
8

9

∞
∑

k=1

8−k

=
5

18
+

8

63

=
17

42
,

and by subtraction,

P [ρ1 = 2] =
2

21
,

from which we obtain

E[ρ1] =
25

42
.

5.3 Complete Convergence of Γ′n

Next we will show complete covergence of Γ′
n

n
to 25

42 .

∞
∑

n=1

P

[
∣

∣

∣

∣

Γ′n
n
−

25

42

∣

∣

∣

∣

≥ ε

]

=
∞
∑

n=1

P

[

∣

∣

∣

∣

n
∑

i=0

ρi −
25

42
n

∣

∣

∣

∣

≥ nε

]

(5)

=

∞
∑

n=1

P

[

∣

∣

∣

∣

ρ0 + ρn −
25

42
+

n−1
∑

i=1

(

ρi −
25

42

)
∣

∣

∣

∣

≥ nε

]

≤

∞
∑

n=1

P

[

∣

∣

∣

∣

ρ0 + ρn −
25

42

∣

∣

∣

∣

+

∣

∣

∣

∣

n−1
∑

i=1

(

ρi −
25

42

)
∣

∣

∣

∣

≥ nε

]
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which, using the fact that 0 ≤ ρi ≤ 1 i ∈ {0, n},

≤
∞
∑

n=1

P

[

∣

∣

∣

∣

n−1
∑

i=1

(

ρi −
25

42

)
∣

∣

∣

∣

≥ nε− 2

]

.

Now we use a fourth moment version of Markov’s inequality, and then expand the
fourth power on the sum and use the fact that E[ρi −

25
42 ] = 0 for i = 1, . . . , n− 1.

∞
∑

n=1

P

[

∣

∣

∣

∣

n−1
∑

i=1

(

ρi −
25

42

) ∣

∣

∣

∣

≥ nε− 2

]

≤

∞
∑

n=1

E[|
∑n−1

i=1 (ρi −
25
42)|4]

(nε− 2)4
(6)

≤
∞
∑

n=1

Cn2

(nε− 2)4

< ∞

And thus we have shown the complete covergence of Γ′
n

n
to 25

42 . This is similar to our
desired result, but we need to correct the number of A points in such a way that the
corrected set has the correct distribution.

5.4 Adding and Deleting Points

We would like to prove convergence results about Γn,n working with our current
result about Γ′n. To make this connection, we will add or remove the necessary number
of A points (exactly |Nn−n|) in a uniformly random way and then show that |Nn−n| is
not asymptotically large enough to change the limit. Note that once we condition on Nn

to determine the number of points to be added or deleted, the A points will be uniformly
distributed on (B0, Bn+1). We then add or delete (as appropriate) |Nn−n| A points in
a uniform way. The remaining n points of A are therefore uniformly distributed. Let
the random variable Γn represent the size of a solution to the class cover problem on
this new corrected set of points. Note that Γn,n has the same distribution as Γn.

To study the fluctuations of |Nn − n| we construct a random walk on the real line
based on the two Poisson processes. The random walk will take one step up at each A

point and one step down for each B point. As before, let Xi denote the number of A

points in [Bi, Bi+1]. Note that, as mentioned in the calculation of E[ρ1], by the lack of
memory property of the exponential distribution, Xi = Z − 1 where Z has geometric
distribution with parameter 1

2 . Let Yi = Xi − 1 and define a random walk Gk by

Gk =

k−1
∑

i=0

Yi (7)

for k ≥ 1. Gk represents the difference between the number of A and B points up to
the arrival time of the kth B point. Therefore Nn − n = Gn+1 + 1 (a one is added
since the n + 1st B point is not considered). If Gn+1 + 1 < 0, we must add Gn+1 + 1
points of A, while if Gn+1 + 1 > 0, we must delete Gn+1 + 1 points of A. We will use
Chernoff’s theorem [Bil95] to obtain exponential probability bounds on the number of
points added or removed. For 0 ≤ ε ≤ 1,

P [|Gn+1 + 1| ≥ nε] = P [Gn ≥ nε− 1] + P [Gn ≤ −nε− 1] (8)

≤ C1e
−α1(nε−1) + C2e

−α2(nε+1)

for all n ≥ 1, where α1, α2 > 0 and C1, C2 are constants.
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5.5 The Effect of Adding or Deleting Points

We also observe that the addition or deletion of one target class point changes the
cardinality of the solution to the one dimensional CCP by at most one.

Lemma 2. Let X,Y be finite subsets of < and consider X to be the target class. Let
D be the CCCD induced by X,Y and D− be the CCCD formed from X−{x}, Y where
x is some element of X. Then |γ(D)− γ(D−)| ≤ 1

Proof: Let X,Y be finite subsets of < with |X| = n and |Y | = m. We use the same
notation as in Section 4 for αi and ni.
Case 1. Suppose x < Y(1) or x > Y(m). Then only α0 or αm respectively will be affected
by the removal of x. Also since α0 and αm must be either zero or 1, then it must be
that |γ(D)− γ(D−)| ≤ 1.
Case 2. Suppose x ∈ (Y(i), Y(i+1)) for i ∈ {1, 2, . . . ,m − 1}. Again, only αi will be
affected by the removal of x. If ni > 1 then αi may be either zero, one or two.
We must rule out the case that αi changes from two to zero because of the removal
of x. (We don’t have to consider the case that αi switches from zero to two since
x ∈ (Y(i), Y(i+1)) ⇒ ni > 0 ⇒ αi > 0.) If αi = 2 before x is removed then it must be
the case that ni > 1 and therefore ni ≥ 1 after x is removed. Therefore αi must be at
least one after x is removed. If ni = 1 then αi = 1 and after the removal of x, αi = 0.
Therefore |γ(D)− γ(D−)| ≤ 1.

5.6 Complete Covergence of
Γn,n

n

If we let Dn = Γn − Γ′n, then Lemma 2 implies that |Dn| ≤ Gn+1 + 1. We obtain
our result as follows.

∞
∑

n=1

P

[
∣

∣

∣

∣

Γn,n

n
−

25

42

∣

∣

∣

∣

≥ ε

]

=
∞
∑

n=1

P

[
∣

∣

∣

∣

Γn

n
−

25

42

∣

∣

∣

∣

≥ ε

]

(9)

=

∞
∑

n=1

P

[
∣

∣

∣

∣

Γ′n
n
−

25

42
+

Dn

n

∣

∣

∣

∣

≥ ε

]

≤
∞
∑

n=1

P

[∣

∣

∣

∣

Γ′n
n
−

25

42

∣

∣

∣

∣

+

∣

∣

∣

∣

Gn+1 + 1

n

∣

∣

∣

∣

≥ ε

]

≤

∞
∑

n=1

P

[
∣

∣

∣

∣

Γ′n
n
−

25

42

∣

∣

∣

∣

≥
ε

2

]

+

∞
∑

n=1

P

[
∣

∣

∣

∣

Gn+1 + 1

n

∣

∣

∣

∣

≥
ε

2

]

< ∞

We have thus shown complete convergence, and therefore almost sure convergence,
of

Γn,n

n
to 25

42 .

6 Extension to m = an

The proof is easily extended to the case of unequal numbers of target and non-
target points. Let A and B be Poisson processes with rates aλ and λ respectively.
We view the B process until Bn+1, giving n points from B and a random number,
Nn = A(Bn+1), of A points in (0, Bn+1).
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We can use a complete convergence version of the Strong Law of Large Numbers

as before to show that the limit of Γ′
n

n
converges to the mean of ρi. To compute this

mean, we use Lemma 1 and the fact that the distribution of the number of A points in
(Bi, Bi+1) has a shifted geometric distribution with parameter a

a+1 . We calculate the
following probabilities.

P [ρ1 = 0] = P [Xi = 0] =
1

a + 1
.

P [ρ1 = 1] =

∞
∑

k=1

P [ρ1 = 1|X1 = k]P [X1 = k] (10)

=

∞
∑

k=1

[

5

9
+

4

9
41−k

]

ak

(a + 1)k+1

=
5a2 + 12a

3(a + 1)(3a + 4)
.

By subtraction,

P [ρ1 = 2] = 1− P [ρ1 = 0]− P [ρ1 = 1] =
12a2

3(a + 1)(3a + 4)
,

therefore

E[ρ1] = P [ρ1 = 1] + 2P [ρ1 = 2] =
a(13a + 12)

3(a + 1)(3a + 4)
.

We must adjust the number of A points to obtain the desired number, banc. We
again consider a random walk based on two Poisson processes, which takes a step of
size one up at each point in A and a step of size a down at each point in B. Using the
notation of Section 5.4, let Xi = Zi − 1, where Zi has a geometric distribution with
parameter a

a+1 , then Yi = Xi − a are the steps in the random walk. As in the previous
case, the Chernoff bounds show that the insertion or deletion of A points does not
cause a difference between the asymptotics of Γn and Γ′n.

7 Discussion

Our result provides a strong law of large numbers for a class cover problem in
which the data are uniformly distributed on (0, 1). Using the language of [PDM02],
the CCP we consider is the constrained heterogeneous CCP. In this CCP, covering balls
must be centered at data points and may vary in radius. The proof method uses an
associated Poisson process viewpoint to consider independent summands rather than
the dependent summands of the CCP.

Our ongoing research on the randomized CCP is focused in two primary directions.
One goal is to establish a central limit theorem and the related rates of convergence
for the CCP. The second focus is on applications in statistical pattern recognition and
machine learning, where there is considerable interest in CCCD’s arising from high-
dimensional data. We continue to investigate the multi-dimensional setting of the CCP
where the problem is significantly more challenging.
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