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Abstract

We discuss the limiting behavior of the domination number of
random class cover catch digraphs (CCCDs). The CCCD problem
is motivated by its applications in pattern classification. For the
special case of uniformly distributed data in one dimension, Priebe,
Marchette and Devinney found the exact distribution of the domina-
tion number of the random data-induced CCCD, and Devinney and
Wierman proved the Strong Law of Large Numbers (SLLN). We will
present progress toward the SLLN and the Central Limit Theorem
(CLT) for general data distributions in one dimension. The ultimate
goal is to establish SLLN and CLT results for higher dimensional
CCCDs.
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1 Introduction

1.1 Class Cover Problem

The class cover problem (CCP) was introduced by Cowen and Cannon
[CC00], motivated by statistical pattern classification [KLV98].
The CCP is described as follows: A dissimilarity space is a pair (Ω, d)

where Ω is a set, and d is a function: Ω × Ω → R such that d(α, β) =
d(β, α) ≥ d(α, α) = 0 for all α, β ∈ Ω, called a dissimilarity function.
Suppose there are two classes of Ω-elements: {xi : i = 1, · · · , n} and {yj :
j = 1, · · · ,m}. For each xi, we define its covering ball as follows:

Definition 1.1. B(xi) = {ω ∈ Ω : d(ω, xi) < minjd(yj , xi)}.
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A class cover of {xi : i = 1, · · · , n} is a subset of covering balls whose
union contains all xi’s. Obviously the set consisting of all covering balls is
a class cover. The CCP we consider here is to find a minimum cardinality
class cover.

1.2 Class Cover Catch Digraph

We can convert the CCP to a purely graph theory problem as follows:

Definition 1.2. The class cover catch digraph (CCCD) induced by a CCP
is the digraph D = (V,A) with the vertex set V = {xi : i = 1, · · · , n}
and the edge set A such that there is a directed edge (xi, xj) if and only if
xj ∈ B(xi).

Definition 1.3. The set S ⊂ V is a dominating set of a diagraph D =
(V,A) if and only if for all v ∈ V , either v ∈ S or (s, v) ∈ A for some
s ∈ S.

It is easy to see that the CCP is actually equivalent to finding a minimum
cardinality dominating set of the corresponding CCCD. Cowen and Cannon
prove that the dominating set problem is essentially a special case of the
CCP, and since the dominating set problem is NP-hard, it follows that the
CCP is also NP-Hard [CC00].

1.3 Domination Number

Definition 1.4. The domination number of a CCCD is the cardinality of
the CCCD’s minimum dominating set.

The domination number serves as a measure of success in distinguishing
the classes X and Y from each other. In 1962, Ore [Ore62] first used the
name “domination number”. Due to its many applications in such fields
as computer networks, social sciences and computational complexity, there
has been increasing interest in this topic. Haynes, Hedetniemi and Slater
[HHS98a] provide a comprehensive discussion of domination in graphs, with
more advanced topics covered in [HHS98b].

1.4 Randomization

To study the problem from a statistical perspective, we need to add ran-
domness to the Ω-valued points xi and yj . Specifically, we replace xi by
random variable Xi, and yj by random variable Yj . Here we suppose
{Xi : i = 1, · · · , n} and {Yj : j = 1, · · · ,m} are two sets of i.i.d. ran-
dom variables taking values in Ω, with distribution functions FX and FY ,
respectively. We assume that the Xi’s are independent of the Yj ’s. After
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such randomization, all the previous definitions and notions can still be ap-
plied, provided that all Xi’s and Yj ’s are distinct with probability one. In
particular, we denote the domination number by Γn,m(FX , FY), or simply
by Γn,m. Obviously, Γn,m is a random variable whose distribution depends
on n,m,FX and FY .

1.5 Applications in Pattern Classification

Pattern classification is “the assignment of a physical object or event to
one of several pre-specified categories” (See [DH73, page 2]). It is widely
applied to real world problems such as automated speech recognition, DNA
sequence identification, and fingerprint identification. For a thorough de-
scription of pattern classification, see the two classic books [DHS01] and
[DGL96].
The abstract mathematical model of the pattern classification problem

is formulated as follows [KLV98]. For simplicity, but without loss of gen-
erality, suppose we have two classes of objects of interest, which we will
call class X and class Y, respectively. We assume that the objects of both
classes belong to a common dissimilarity space Ω. To model the uncertainty
about which class the objects we encounter belong, we assume that there
are prior probabilities PX and PY for these two classes (

∑

c∈{X ,Y} Pc = 1).
Furthermore, we assume that given the class X or Y, the objects of that
class are drawn according to the class-conditional distribution functions
FX (x) or FY(y). We can generate a random pair

(

c(Ψ),Ψ
)

in a two-step
process: first choose the random class label c(Ψ) ∈ {X ,Y} according to the
prior probabilities; then based on the chosen class, select Ψ according to
the corresponding class-conditional distribution function.
In a classification problem, for an observation pair (c(ψ), ψ) generated

as above, only the data part ψ is given while the class label part c(ψ) is
unknown, so the goal of a classifier is to correctly guess whether c(ψ) is X
or Y. We are given a training sample of size k with known classification:

Dk =
{

(

c(ψ1), ψ1
)

, · · · ,
(

c(ψk), ψk

)

}

.

A classifier is a function ĉk(ψ) = ĉk(ψ,Dk), which, based on the training
data Dk, assigns a class label X or Y to any input point ψ ∈ Ω. The
performance of a classifier ĉ can be measured by the probability of error, or
misclassification rate, given by

E
[

P (ĉk(Ψ) 6= c(Ψ) | Dk)
]

.

The CCP has been actively studied recently, since its solution can be
directly used to generate classifiers competitive with the other methods.
The data points {Xi : i = 1, · · · , n} and {Yj : j = 1, · · · ,m} constitute
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the training data from classes X and Y, respectively. Thus, in the setting
of classification, the CCP is just a problem of selecting a small set of data
points to be representative of a class. We want this set as small as possible,
i.e. a minimal cardinality dominating set, to make the classifier less complex
while keeping most of the relevant information. A simple CCCD classifier
can be constructed as follows: by switching the roles of X and Y, we can get
a pair of dual CCP’s, resulting in two solutions such as BX =

{

B(Xi) : i ∈

I, I ⊂ {1, · · · , n}
}

and BY =
{

B(Yj) : j ∈ J, J ⊂ {1, · · · ,m}
}

, respectively.
Define CX = {ω ∈ Ω : ω ∈ B(Xi) s.t. B(Xi) ∈ BX }, CY = {ω ∈ Ω : ω ∈
B(Yi) s.t. B(Yi) ∈ BY}. We can incorporate these two solutions into a
classifier ĉ(ψ) : Ω→ {X ,Y} as follows:

ĉ(ψ) =











X ψ ∈ CX ∩ CY
c,

Y ψ ∈ CY ∩ CX
c,

undetermined otherwise.

More details about the CCP’s application to classification are presented
in [PMDS02].

2 Previous Results

There have been several research results on the probabilistic properties of
Γn,m in the case of Ω = R. In this one dimensional situation, we denote
Y(j) as the jth order statistic of Y0 = 0, Y1, · · · , Ym, Ym+1 = 1, and let the
random variable αj,m be the minimum number of covering balls needed to
cover the Nj,m X -class points located between Y(j) and Y(j+1). We refer
to αj,m (j = 0,m) as external components, and αj,m (j = 1, · · · ,m− 1) as
internal components. It should be noted that Γn,m =

∑m

j=0 αj,m. This way
we are able to decompose the problem into m+ 1 sub-problems of finding
the domination number αj,m in the interval [Y(j), Y(j+1)].
It is obvious that αj,m = 0 if and only if Nj = 0. We see that αj,m can

be at most 2, because all Xi’s in [Y(j), Y(j+1)] are contained in the covering
balls of the two X points that are closest to midpoint of this interval on
the right and left. Since the domination number is a non-negative integer,
αj,m can only be 0, 1 or 2.
With careful analysis, the probability of each of these values was deter-

mined exactly by Priebe, Devinney and Marchette [PDM01]. They found
the conditional distribution of αj,m given Nj,m for the special case of Ω = R

and FX = FY = U [0, 1], where U [0, 1] is the uniform distribution on the
interval [0, 1]:

Theorem 2.1. Suppose Ω = R. If FX = FY = U [0, 1], then the following
are true:
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• For j ∈ {0, 1, · · · ,m}, if Nj,m = 0 then αj,m = 0.

• For j ∈ {0,m}, if Nj,m > 0 then αj,m = 1.

• For j ∈ {1, 2, · · · ,m− 1}, if Nj,m = nj,m > 0 then

P (αj,m = 1 | Nj,m = nj,m) = 1− P (αj,m = 2 | Nj,m = nj,m)

=
5

9
+
4

9

1

4nj,m−1
.

Note that the interval components {αj,m : 1 ≤ j ≤ m−1} are identically
distributed, and the external components α0,m and αm,m are identically
distributed.
From the above theorem, we know that for j ∈ {1, 2, · · · ,m− 1}, given

Nj,m = nj,m > 0, the conditional probability of αj,m = 2 is an increasing
function of nj,m, which just means that αj,m tends to become larger as the
number of X points increases, for fixed m.
Under the same assumptions as Theorem 1.1, Devinney and Wierman

proved a strong law of large numbers for Γn,m [DW02]:

Theorem 2.2. Suppose Ω = R, and FX = FY = U [0, 1]. If m = brnc, r ∈
(0,∞), then

lim
n→+∞

Γn,m

m
= g(r) a.s.

where

g(r) ≡
12r + 13

3(r + 1)(4r + 3)
.

As suggested in Figure 1, g(r)→ 0 when r →∞, which is justified by the
fact that asymptotically the interval between Y(j) and Y(j+1) contains no X

point almost surely. Moreover, g(r)→ 13
9 as r → 0. This corresponds to the

situation where each interval between Y(j) and Y(j+1) contains very large
number of X points. According to Theorem 1.1, the probability of αj,m = 1
is approximately 5

9 , while the probability of αj,m = 2 is approximately
4
9 ,

so 13
9 =

5
9 · 1 +

4
9 · 2 can be just viewed as an expectation value of αj,m.

In their proof in [DW02], DeVinney and Wierman first prove the special
case of r = 1. They construct two related Poisson processes A and B, with
common rate λ ∈ (0,∞). Points of A play the role of X points, and points
of B play the role of Y points. The classical SLLN can be applied to a CCP
induced from these A and B points, then the result is transferred back to
the original setting using the conditional uniformity property of the Poisson
processes.
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Figure 1: A graph of the limit function g(r), plotted using MATLAB.

For the r 6= 1 case, the proof is easily extended by letting process A
having rate rλ and process B having rate λ.

Remark : We have found an alternative proof to Theorem 2.2 by using an
existing SLLN theorem for quadrant dependent random variables [Mat92].
The concept of quadrant dependence was first introduced by E.L. Lehmann
in [Leh66], and the limiting theory for quadrant dependent random vari-
ables is comprehensively discussed in [New84].

3 Strong Law of Large Numbers (SLLN)

In Theorem 2.2, the classes X and Y both have uniform distributions.
But in real world applications, they usually have different non-uniform
distributions. In fact, the principal motive is classifying objects belonging
to different classes. Our research has proved an extension to Theorem 2.2
for more general distribution functions in the one dimensional case:

Theorem 3.1. Suppose Ω = R. Assume the densities fX (x) and fY(y)
are bounded functions with a finite number of discontinuities. If m/n→ r,
then

lim
n→+∞

Γn,m

m
=

∫

g
(

r
fY(u)

fX (u)

)

fY(u)du a.s. (1)
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Proof Sketch. Our proof is conducted in two phases: We first consider piece-
wise constant densities fX and fY , i.e.

fX (x) =

k
∑

l=1

alI[cl−1,cl)(x),

and

fY(y) =
k
∑

l=1

blI[cl−1,cl)(y),

where a = c0 < c1 < · · · < ck = b. To prove (1) for this type of den-
sity function, we divide the CCP into sub-CCP’s with conditional uniform
distributions for data points in the intervals [cl−1, cl]. In each interval,
the ratio between the number of Y points and X points is asymptotically

r fY(u)
fX (u)

. From Theorem 2.2, we know that

domination number in [cl−1, cl]

number of Y points in[cl−1, cl]

is asymptotically g
(

r fY(u)
fX (u)

)

, u ∈ [cl−1, cl]. By adding up the domination

numbers for all the intervals, we get an approximation Γ′ to Γn,m. We can

prove that equation (1) holds if
Γn,m

m
is replaced by Γ′

m
. Since the difference

between Γ′ and Γn,m is bounded by 2k, we conclude that equation (1) is
also true.
For the general continuous case, we construct a sequence of piece-wise

constant density functions fX ,k and fY,k converging to fX and fY , respec-
tively. Based on Xi and Yj , we define two new sequences of random vari-
ables Xi,k and Yj,k, which are respectively distributed according to FX ,k

and FY,k. From the first step in our proof, we know that the SLLN is true
for the domination number of the CCCD induced by the newly defined
points Xi,k and Yj,k. By using the relation between Xi and Xi,k, and be-
tween Yi and Yi,k, we can argue that the SLLN still holds for the original
densities FX and FY .

Intuitively, when class X and class Y both have the same distribution
pattern, it means that their objects tend to be interspersed. Hence a larger
dominating set is needed to distinguish X from Y than when they have
different distributions. In the following theorem, we have actually proved
that equal fX and fY give the maximum limit in the SLLN. This result
could be used to construct an asymptotically distribution-free statistical
test for equality of densities.
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Theorem 3.2. Under the same assumptions as in Theorem 3.1,

∫

g
(

r
fY(u)

fX (u)

)

fY(u)du ≤ g(r)

where the equality holds if and only if fX (u) = fY(u) a.s.

Proof. Note that g(r) is a convex function, hence g∗(r) = g( 1
r
) is a concave

function. Expressing g in terms of g∗, and then applying Jensen’s inequality,
we have:

∫

g
(

r
fY(u)

fX (u)

)

fY(u)du =

∫

g∗
(1

r

fX (u)

fY(u)

)

fY(u)du

≤ g∗
(

∫

1

r

fX (u)

fY(u)
fY(u)du

)

= g∗(
1

r
) = g(r)

4 Asymptotic Variance

Our ultimate goal is to prove the CLT for Γn,m. To achieve this, an impor-
tant first step is to calculate the limiting variance:

Theorem 4.1. Suppose Ω = R, and FX = FY = U [0, 1]. If m/n → r,
then

lim
n→∞

V ar(Γn,m)

m
= v(r) (2)

where

v(r) ≡
1536r5 + 6848r4 + 11536r3 + 8836r2 + 2793r + 180

9(r + 1)3(4r + 3)4

Proof Sketch. By decomposing Γn,m into internal and external components,
we can write

V ar(Γn,m) = V ar(α0,m +

m−1
∑

j=1

αj,m + αm,m),

which can be expressed as a sum of variances and covariances of the com-
ponents. Thus in order to get (2), we just need to calculate the limiting
values of the V ar(αj,m) and Cov(αj1,m, αj2,m).
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Figure 2: A graph of the limit function v(r), plotted using MATLAB.

We compute V ar(αj,m) = E(αj,m
2) − (E(αj,m))

2 using the identities
E(αj,m

k) = E[E(αj,m
k | Nj,m)], k = 1, 2. Using the conditional proba-

bilities given in Theorem 1.1, E(αj,m
k | Nj,m) can be expressed in terms

of 4Nj,m . Thus we only need to calculate E(4Nj,m), which can be further
written as E[E(4Nj,m |Lj,m)] where Lj,m = Y(j+1) − Y(j). This iterated
expectation can be calculated by using the fact that Nj,m is binomial dis-
tributed given Lj,m and using knowledge of the joint distribution of the
order statistics Y(j). Extensive calculations yield

V ar(αj,m) =
144r3 + 360r2 + 237r + 20

9(r + 1)2(4r + 3)2
+ o(1) for j ∈ {1, · · · ,m− 1}.

For Cov(αj1,m, αj2,m), similarly we first compute the conditional ex-
pectation E(αj1,mαj2,m | Nj1,m, Nj2,m), then calculate E(4

Nj1,m+Nj2,m) by
conditioning on Lj1,m and Lj2,m. A much more intricate analysis is needed
to prove that the covariances are of order O( 1

m
). We obtain

Cov(αj1,m, αj2,m) =
−r2(2304r4 + 9984r3 + 16096r2 + 11440r + 3025)

9(r + 1)3(4r + 3)4m

+O(
1

m2
) for j1, j2 ∈ {1, · · · ,m− 1}.

The fact that αj,m’s are weakly dependent in the sense that the covariances
tend to 0 in the order of O( 1

m
) may be helpful in proving the Central Limit

Theorem.
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5 Future Research Directions

We plan to continue investigating the limiting behavior of the domination
number, namely, the strong law of large numbers and central limit theorem
for Γn,m. This research will continue in two directions: one is to prove
the SLLN for the higher dimensional space Ω = Rd, d ≥ 2; the other is to
prove the CLT for Γn,m for the case of Ω = R and FX = FY = U [0, 1],
then extend it to more general distribution functions, and finally to higher
dimensional spaces. In this effort, we are investigating the use of subaddi-
tive process methods for the SLLN, and characteristic function methods,
linear quadrant dependence, Stein’s method, and methods of Yukich and
collaborators [PY01] for the CLT.
It should be noted that the one dimensional problem is mainly a testing

ground for identifying approaches that might be useful in higher dimen-
sions. The real goals are the SLLN and CLT in higher dimensional CCCD
problems. One difficulty we encounter in higher dimension situations is how
to divide the whole sample space into regions, as we divided the [0, 1] into
intervals (Y(j), Y(j+1)) in the one dimensional case. Therefore most likely
we will not have such a simple identity as Γn,m =

∑m

j=1 αj,m.
In addition to the CLT and SLLN for Γn,m, we would like to apply the

developing methods to other similar functions of the CCCD besides the
domination number. One example is the size of greedy algorithm approxi-
mation to the minimum dominating set.
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