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Abstract

Statistical pattern classification methods based on data-random graphs were introduced recently. In
this approach, a random directed graph is constructed from the data using the relative positions of the
data points from various classes. Different random graphs result from different definitions of the prox-
imity region associated with each data point and different graph statistics can be employed for data
reduction. The approach used in this article is based on a parameterized family of proximity maps
determining an associated family of data-random digraphs. The relative arc density of the digraph is
used as the summary statistic, providing an alternative to the domination number employed previously.
An important advantage of the relative arc density is that, properly re-scaled, it is a U-statistic, facili-
tating analytic study of its asymptotic distribution using standard U-statistic central limit theory. The
approach is illustrated with an application to the testing of spatial patterns of segregation and associa-
tion. Knowledge of the asymptotic distribution allows evaluation of the Pitman and Hodges-Lehmann
asymptotic efficacies, and selection of the proximity map parameter to optimize efficiency. Furthermore
the approach presented here also has the advantage of validity for data in any dimension.

1 Introduction

Classification and clustering have received considerable attention in the statistical literature. In recent years,
a new classification approach has been developed which is based on the relative positions of the data points
from various classes. Priebe et al. introduced the class cover catch digraphs (CCCD) in R and gave the
exact and the asymptotic distribution of the domination number of the CCCD [PDMO01]. DeVinney et
al. [DPMS02], Marchette and Priebe [MPO03], Priebe et al. [PMDS03], [PSMCO03] applied the concept in
higher dimensions and demonstrated relatively good performance of CCCD in classification. The methods
employed involve data reduction (condensing) by using approximate minimum dominating sets as prototype
sets (since finding the exact minimum dominating set is an NP-hard problem —in particular for CCCD).
Furthermore the exact and the asymptotic distribution of the domination number of the CCCD are not
analytically tractable in multiple dimensions.

Ceyhan and Priebe introduced the central similarity proximity map and r-factor proximity maps and the
associated random digraphs in [CP03a] and [CP03b], respectively. In both cases, the space is partitioned
by the Delaunay tessellation which is the Delaunay triangulation in R2. In each triangle, a family of data-
random proximity catch digraphs is constructed based on the proximity of the points to each other. The
advantages of the r-factor proximity catch digraphs are that an exact minimum dominating set can be found
in polynomial time and the asymptotic distribution of the domination number is analytically tractable. The
latter is then used to test segregation and association of points of different classes in [CP03b]. Segregation
and assocation are two patterns that describe the spatial relation between two or more classes. See Section
?? for more detail.



In this article, we employ a different statistic, namely the relative (arc) density, that is the proportion
of all possible arcs (directed edges) which are present in the data random digraph. This test statistic has
the advantage that, properly rescaled, it is a U-statistic. Two plain classes of alternative hypotheses, for
segregation and association, are defined in Section 2.5. The asymptotic distributions under both the null and
the alternative hypotheses are determined in Section 3 by using standard U-statistic central limit theory.
Pitman and Hodges-Lehman asymptotic efficacies are analyzed in Sections 4.3 and 4.4, respectively. This
test is related to the available tests of segregation and association in the ecology literature, such as Pielou’s
test and Ripley’s test. See discussion in Section 6 for more detail. Our approach is valid for data in any
dimension, but for simplicity of expression and visualization, will be described for two-dimensional data.

2 Preliminaries

2.1 Proximity Maps

Let (Q, M) be a measurable space and consider a function N : Q x 22 — 29, where 29 represents the power
set of Q. Then given Y C Q, the proxzimity map Ny(-) = N(-,Y) : Q@ — p(Q) associates with each point
x € Q a proximity region Ny(x) C . Typically, N is chosen to satisfy x € Ny(z) for all z € Q. The use of
the adjective prozimity comes form thinking of the region Ny(x) as representing a neighborhood of points
“close” to z. ([Tou80, JT92].)

2.2 r-Factor Proximity Maps

We now briefly define r-factor proximity maps. (See Ceyhan and Priebe [CP03b] for more details). Let
Q= R? and let Y = {y1,y2,y3} C R? be three non-collinear points. Denote by T'()’) the triangle —including
the interior— formed by the three points (i.e. T'()) is the convex hull of )). For r € [1,00], define N3, to
be the r-factor proximity map as follows; see also Figure 1. Using line segments from the center of mass
(centroid) of T(Y) to the midpoints of its edges, we partition 7'()) into “vertex regions” R(y1), R(y2), and
R(ys3). For x € T(Y) \ Y, let v(z) € Y be the vertex in whose region z falls, so € R(v(z)). If z falls on
the boundary of two vertex regions, we assign v(z) arbitrarily to one of the adjacent regions. Let e(x) be
the edge of T(Y) opposite v(z). Let £(z) be the line parallel to e(z) through z. Let d(v(z),£(x)) be the
Euclidean (perpendicular) distance from v(z) to £(z). For r € [1,00), let £.(z) be the line parallel to e(z)
such that d(v(z), £,(z)) = rd(v(z),£(z)) and d(£(z), L. (z)) < d(v(z), £.(z)). Let T,.(x) be the triangle similar
to and with the same orientation as T'()’) having v(x) as a vertex and £,.(x) as the opposite edge. Then the
r-factor proximity region N3, (x) is defined to be T(x) N T'(}). Notice that r > 1 implies x € N3,(z). Note
also that lim,_,, NJ,(z) = T'(Y) for all z € T(Y) \ Y, so we define N3°(x) = T'(Y) for all such z. For z € )/,
we define N3,(x) = {x} for all r € [1, oc].

2.3 Data-Random Proximity Catch Digraphs

If X, := {X1,X>, -+, X, } is a set of Q-valued random variables, then the Ny (X;), i =1,--- ,n, are random
sets. If the X; are independent and identically distributed, then so are the random sets Ny (X;).

In the case of an r-factor proximity map, notice that if X; % F and F has a non-degenerate two-
dimensional probability density function f with support(f) C T(Y), then the special case in the construction
of N3, — X falls on the boundary of two vertex regions — occurs with probability zero.

The proximities of the data points to each other are used to construct a digraph. A digraph is a
directed graph; i.e. a graph with directed edges from one vertex to another based on a binary relation.
Define the data-random proximity catch digraph D with vertex set V = {Xi,---,X,} and arc set A4 by
(X;,X;) € A < X € Ny(X;). Since this relationship is not symmetric, a digraph is needed rather than



Figure 1: Construction of r-factor proximity region, N3 (z) (shaded region).

a graph. The random digraph D depends on the (joint) distribution of the X; and on the map Ny.

2.4 Relative Density

The relative arc density of a digraph D = (V, A) of order |V| = n, denoted p(D), is defined as

||

p(D) = .y —

where | - | denotes the set cardinality functional [JLR0O0].

Thus p(D) represents the ratio of the number of arcs in the digraph D to the number of arcs in the
complete symmetric digraph of order n, which is n(n — 1). For brevity of notation we use relative density
rather than relative arc density henceforth.

iid

If X1,---, X, ~ F the relative density of the associated data-random proximity catch digraph D, denoted

p(Xn; h, Ny), is a U-statistic,

1
p(Xn; h, Ny) = nn=1) Z Zh(X’hXj;Ny) 1)
i<j
where
h(Xi, X;;Ny) = (X, X)) € A+ {(X;, Xi) € A}

= I{X; € Ny(Xi)} + I{X; € Ny(X;)}, (2)

where I(-) is the indicator function. We denote h(X;, X;; Ny) as h;; for brevity of notation. Although the
digraph is asymmetric, h;; is defined as the number of arcs in D between vertices X; and Xj, in order to
produce a symmetric kernel with finite variance [Leh88].

The random variable p, := p(Xy,;h, Ny) depends on n and Ny explicitly and on F implicitly. The
expectation E [p,], however, is independent of n and depends on only F' and Ny:

1
0<E[p,) = EE [h12] <1 for all n > 2. 3)



The variance Var [p,] simplifies to

1 n—2
0 S Var [pn] = mVar [th] + mcov [hlg, h13] S 1/4 (4)
A central limit theorem for U-statistics [Leh88] yields
V(o — E [pn]) = N (0, Cov [z, has)) (5)

provided Cov [h12, h13] > 0. The asymptotic variance of p,, Cov [hi2, h13], depends on only F' and Ny.
Thus, we need determine only E [h12] and Cov [hi12, h13] in order to obtain the normal approximation

E [hlz] Cov [h12; h13]
2 n

pn PR N(E [pn), Var [p,]) = N ( > for large n. (6)

2.5 Null and Alternative Hypotheses

In a two class setting, the phenomenon known as segregation occurs when members of one class have a
tendency to repel members of the other class. For instance, it may be the case that one type of plant does
not grow well in the vicinity of another type of plant, and vice versa. This implies, in our notation, that X;
are unlikely to be located near any elements of ). Alternatively, association occurs when members of one
class have a tendency to attract members of the other class, as in symbiotic species, so that the X; will tend
to cluster around the elements of ), for example. See, for instance, [Dix94], [CRT99]. The null hypothesis for
spatial patterns have been a contraversial topic in ecology from the early days. Gotelli and Graves [GG96]
have collected a voluminous literature to present a comprehensive analysis of the use and misuse of null
models in ecology community. They also define and attempt to clarify the null model concept as “a pattern-
generating model that is based on randomization of ecological data or random sampling from a known or
imagined distribution. . . . The randomization is designed to produce a pattern that would be expected
in the absence of a particular ecological mechanism.” In other words, the hypothesized null models can
be viewed as“thought experiments,” which is conventially used in the physical sciences, and these models
provide a statistical baseline for the analysis of the patterns. For statistical testing for segregation and
association, the null hypothesis we consider is a type of complete spatial randomness; that is,
Ho: X; X UT())

where U(T'())) is the uniform distribution on T'()). If it is desired to have the sample size be a random
variable, we may consider a spatial Poisson point process on T'()) as our null hypothesis.

We define two classes of alternatives, H® and H2 with € € (0,v/3/3), for segregation and association,
respectively. Fory € ), let e(y) denote the edge of T'() opposite vertex y, and for z € T() let £,(x) denote
the line parallel to e(y) through z. Then define T'(y,€) = {z € T(Y) : d(y, {y(z)) < €}. Let H be the model
under which X; % U(T (V) \ UyeyT(y,€)) and H2 be the model under which X; % U (U,eyT(y, V3/3 —€)).
Thus the segregation model excludes the possibility of any X; occurring near a y;, and the association model
requires that all X; occur near a y;. The V/3/3 — € in the definition of the association alternative is so that
€ = 0 yields Hp under both classes of alternatives.

Remark: These definitions of the alternatives are given for the standard equilateral triangle. The
geometry invariance result of Theorem 1 from Section 3 still holds under the alternatives, in the following
sense. If, in an arbitrary triangle, a small percentage ¢ -100% where § € (0,4/9) of the area is carved away as
forbidden from each vertex using line segments parallel to the opposite edge, then under the transformation to
the standard equilateral triangle this will result in the alternative H \S/m. This argument is for segregation

with § < 1/4; a similar construction is available for the other cases.



3 Asymptotic Normality Under the Null and Alternative Hy-
potheses

First we present a “geometry invariance” result which allows us to assume T'(})) is the standard equilateral
triangle, 7((0,0), (1,0), (1/2,/3/2)), thereby simplifying our subsequent analysis.

Theorem 1: Let Y = {yi,y2,y3} C R? be three non-collinear points. For i = 1,--- ,n let X; iy
F = U(T(Y)), the uniform distribution on the triangle 7(}). Then for any r € [1,00] the distribution of
p(Xn;h, N3,) is independent of ), hence the geometry of T'()).

Proof: A composition of translation, rotation, reflections, and scaling will transform any given trian-
gle T, = T(y1,y2,y3) into the “basic” triangle T, = T'((0,0),(1,0), (c1,¢2)) with 0 < ¢; < 1/2, ¢2 > 0
and (1 — ¢1)? + ¢3 < 1, preserving uniformity. The transformation ¢, : R? — R? given by ¢.(u,v) =

(u + 1_\/25” v, % v) takes T} to the equilateral triangle T, = T'((0,0), (1,0), (1/2,4/3/2)). Investigation of

the Jacobian shows that ¢, also preserves uniformity. Furthermore, the composition of ¢, with the rigid
motion transformations maps the boundary of the original triangle T, to the boundary of the equilateral
triangle T, the median lines of T, to the median lines of T,, and lines parallel to the edges of T, to lines
parallel to the edges of T.. Since the joint distribution of any collection of the h;; involves only probability
content of unions and intersections of regions bounded by precisely such lines, and the probability content
of such regions is preserved since uniformity is preserved, the desired result follows. H

Based on Theorem 1 and our uniform null hypothesis, we may assume that T())) is the standard equi-
lateral triangle with = {(0,0), (1,0), (1/2,v/3/2)} henceforth.

For our r-factor proximity map and uniform null hypothesis, the asymptotic null distribution of p,(r) =
p(Xn;h, N3,) can be derived as a function of r. Let u(r) := E [p,(r)] and v(r) := CoV [hi2, hi3]. Notice that
p(r) = E[hi2]/2 = P(X, € Nj;(X1)) is the probability of an arc occurring between any pair of vertices.

3.1 Asymptotic Normality under the Null Hypothesis

By detailed geometric probability calculations, provided in Appendix 1, the mean and the asymptotic vari-
ance of the relative density of the r-factor proximity catch digraph can explicitly be computed. The central
limit theorem for U-statistics then establishes the asymptotic normality under the uniform null hypothesis.
These results are summarized in the following theorem.

Theorem 2: For r € [1,00),

— N(0,1) (7)
v(r)
where
%Tz for r€][l,3/2),
pwr) =< -2 +4-8r '+ 2r 2 for re€(3/2,2), )
1— %TJ for r € [2,00),
and

v(r) =uvi(r)I(r € [1,4/3)) + va(r) I(r € [4/3,3/2)) + v3(r) I(r € [3/2,2)) + va(r) I(r € [2, 0]) 9)



with

3007 ' — 13824 r° + 898 r® + 77760 1" — 117953 r® + 48888 7° — 24246 r* + 60480 r> — 38880 2 + 3888
m(r) = 58320 14 ’
5467 0 — 37800 r° + 61912 7° + 46588 ° — 191520 7° + 13608 * + 241920 > — 155520 72 + 15552
va(r) = 1 ;
233280 r
va(r) = —[7r'? — 727 + 312710 — 5332¢% 4150727 + 13704 r® — 139264 r° + 273600 r* — 242176 1>

+ 103232 7r% — 27648 r + 8640]/[960 r°],

_ 157" — 1172 —48r +25
- 1576 '

V4 (r)

For r = 00, pn(r) is degenerate.
See Appendix 1 for the proof.

Consider the form of the mean and variance functions, which are depicted in Figure 2. Note that u(r)
is monotonically increasing in r, since the proximity region of any data point increases with r. In addition,
u(r) = 1 as r — oo, since the digraph becomes complete asymptotically, which explains why p,(r) is

degenerate, i.e. v(r) = 0, when r = oo. Note also that u(r) is continuous, with the value at r = 1
(1) = 37/216.

Regarding the asymptotic variance, note that v(r) is continuous in 7 with lim,_, . v(r) = 0 and »(1) =
34/58320 ~ .000583 and observe that sup, >, v(r) = .1305 at argsup, >, v(r) ~ 2.045.
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Figure 2: Asymptotic null mean u(r) (left) and variance v(r) (right), from Equations (8) and (9) in Theorem
2, respectively. The vertical lines indicate the endpoints of the intervals in the piecewise definition of the
functions. Notice that the vertical axes are differently scaled.

To illustrate the limiting distribution, r = 2 yields

ﬁ(p% u2) _ @ (,,n@) - g) £5 N(0,1)

5 25
9 aperox 2 )
pn(2) N s To2m

or equivalently

Figure 3 indicates that, for r = 2, the normal approximation is accurate even for small n (although
kurtosis may be indicated for n = 10). Figure 4 demonstrates, however, that severe skewness obtains for
small values of n, and extreme values of 7. The finite sample variance in Equation 4 and skewness may be
derived analytically in much the same way as was Cov [hi2, h13] for the asymptotic variance. In fact, the



exact distribution of p,(r) is, in principle, available by successively conditioning on the values of the Xj.
Alas, while the joint distribution of h12, k13 is available, the joint distribution of {h;; }1<i<j<n, and hence the
calculation for the exact distribution of p,(r), is extraordinarily tedious and lengthy for even small values of

n.

Density
Density
3
Density

Figure 3: Depicted are the distributions of p,(2) "R N (2,72%-) for n = 10,20,100 (left to right).
Histograms are based on 1000 Monte Carlo replicates. Solid curves represent the approximating normal
densities given by Theorem 2. Again, note that the vertical axes are differently scaled.
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Figure 4: Depicted are the histograms for 10,000 Monte Carlo replicates of p1g(1) (left) and p19(5) (right)
indicating severe small sample skewness for extreme values of 7.

Letting H,(r) = Y1 | h(X;, Xp41), the exact distribution of p,(r) can be evaluated based on the recur-
rence J
(n+ D)nppia(r) =n(n = 1)pn(r) + Hn(r)

by noting that the conditional random variable H,(r)|X,4+1 is the sum of n independent and identically
distributed random variables. Alas, this calculation is also tedious for large n.

3.2 Asymptotic Normality Under the Alternatives

Asymptotic normality of relative density of the proximity catch digraphs under the alternative hypotheses of
segregation and association can be established by the same method as under the null hypothesis. Let E 5[]
( EA[]) be the expectation with respect to the uniform distribution under the segregation ( association )

alternatives with € € (0,v/3/3).



Theorem 3: Let ps(r,e) (and pa(r,e)) be the mean and vg(r,e) (and v4(r,€)) be the covariance,
Cov [h12, i3] for 7 € (0,1] and € € (0,v/3/3) under segregation (and association). Then under HS,

V(pn(r) — ps(r,e€)) =N N(0,vg(r,€)) for the values of the pair (r,e) for which vgs(r,e) > 0. Likewise,
under HA, \/n(pn(r) — pa(r,e)) £ N(0,v4(r,€)) for the values of the pair (r,€) for which v4(r,€) > 0.

Sketch of Proof: Under the alternatives, i.e. € > 0, p,(r) is a U-statistic with the same symmetric
kernel h;; as in the null case. The mean ps(r,e) = E [p,(r)] = E [hi12]/2 (and pa(r,€)), now a function
of both r and ¢, is again in [0,1]. The asymptotic variance vs(r,€) = Cov ([h1a, h13] (and v4(r,€)), also a
function of both r and ¢, is bounded above by 1/4, as before. The explicit forms of pug(r,€) and pa(r,e) is
given, defined piecewise, in Appendix 2. Sample values of ug(r,€), vs(r,€) and pa(r,€), va(r,€) are given in
Appendix 3 for segregation with e = v/3/4 and for association with € = v/3/12. Thus asymptotic normality
obtains provided vg(r,€) > 0 (va(r,e) > 0); otherwise p, (r) is degenerate. Note that under H?,

vs(r,e) > 0 for (r,e) € [1,v3/(2¢)) x (0,v3/4] U [1,V3/e - 2) x (V3/4,V/3/3),

and under HA,
va(r,e) > 0 for (r,€) € (1,00) x (0,v3/3) U{1} x (0,v3/12). W

Notice that for the association class of alternatives any r € (1,00) yields asymptotic normality for all
€ € (0, V3/ 3), while for the segregation class of alternatives only r = 1 yields this universal asymptotic
normality.

4 The Test and Analysis

The relative density of the proximity catch digraph is a test statistic for the segregation/association alterna-
tive; rejecting for extreme values of p,,(r) is appropriate since under segregation we expect p,,(r) to be large,
while under association we expect p,,(r) to be small. Using the test statistic

o Vilpn(r) = plr)

) 10
0 (10)
the asymptotic critical value for the one-sided level a test against segregation is given by

Za =0 '(1—a) (11)

where ®(-) is the standard normal distribution function. Against segregation, the test rejects for R > 2z1_,
and against association, the test rejects for R < z,.

4.1 Consistency

Theorem 4: The test against HS which rejects for R > 2;_, and the test against HA which rejects for
R < 2z, are consistent for r € [1,00) and € € (0,v/3/3).

Proof: Since the variance of the asymptotically normal test statistic, under both the null and the
alternatives, converges to 0 as n — oo (or is degenerate), it remains to show that the mean under the null,
u(r) = E[pn(r)], is less than (greater than) the mean under the alternative, ug(r,€) = Ec[pn(r)] (pa(r,¢€))
against segregation (association) for € > 0. Whence it will follow that power converges to 1 as n — oc.

Detailed analysis of ug(r,€) and pa(r,€) in Appendix 2 indicates that under segregation ug(r,€) > u(r)
for all € > 0 and r € [1,00). Likewise, detailed analysis of p4(r,€) in Appendix 3 indicates that under
association p4(r,€) < p(r) for all e > 0 and r € [1,00). Hence the desired result follows for both alternatives.
|

In fact, the analysis of u(r,€) under the alternatives reveals more than what is required for consistency.
Under segregation, the analysis indicates that ug(r,€1) < ps(r, e2) for €1 < ea. Likewise, under association,
the analysis indicates that pa(r,e1) > pa(r,e2) for €1 < ea.



4.2 Monte Carlo Power Analysis

kernel density estimate
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Figure 5: Two Monte Carlo experiments against the segregation alternative H? Depicted are kernel

V3/8"
density estimates for p,(11/10) for n = 10 (left) and n = 100 (right) under the null (solid) and alternative

(dashed).

In Figure 5, we present a Monte Carlo investigation against the segregation alternative H \% /8 for r =
11/10 and n = 10,100. With n = 10, the null and alternative probability density functions for p;o(1.1) are
very similar, implying small power (10,000 Monte Carlo replicates yield Efw = (0.0787, which is based on the
empirical critical value). With n = 100, there is more separation between null and alternative probability
density functions; for this case, 1000 Monte Carlo replicates yield B\;‘fw = 0.77. Notice also that the probability
density functions are more skewed for n = 10, while approximate normality holds for n = 100.

For a given alternative and sample size, we may consider analyzing the power of the test — using the
asymptotic critical value— as a function of the proximity factor r. In Figure 6, we present a Monte Carlo
investigation of power against H \5/'5 /8 and H \S/g /4 352 function of r for n = 10. The empirical significance

level is about .05 for r = 2, 3 which have the empirical power 35, (r, v/3/8) ~ .35, and 35,(r,/3/4) = 1. So,
for small sample sizes, moderate values of r are more appropriate for normal approximation, as they yield
the desired significance level and the more severe the segregation, the higher the power estimate.

In Figure 7, we present a Monte Carlo investigation against the association alternative H \% 112 for r =
11/10 and n = 10 and 100. The analysis is same as in the analysis of the Figure 5. In Figure 8, we present a

Monte Carlo investigation of power against H \% /12 and H 5A V324 352 function of r for n = 10. The empirical

significance level is about .05 for r = 3/2, 2, 3, 5 which have the empirical power Bﬁ,(r, V3/12) < .35 with
maximum power at r = 2, and Bf})(r, 5+/3/24) = 1 at r = 3. So, for small sample sizes, moderate values of
r are more appropriate for normal approximation, as they yield the desired significance level, and the more
severe the association, the higher the power estimate.

4.3 Pitman Asymptotic Efficacy

Pitman asymptotic efficiency (PAE) provides for an investigation of “local asymptotic power” — local
around Hy. This involves the limit as n — oo as well as the limit as ¢ = 0. A detailed discussion of
PAE can be found in [KS79] and [Eed63]. For segregation or association alternatives the PAE is given by

®) (p.c=0))>
PAE(p,(r)) = w where k is the minimum order of the derivative with respect to e for which

p®) (re = 0) # 0. That is, u®) (r,e = 0) # 0 but p®(r,e = 0) = 0 for I = 1,2,...,k — 1. Then under
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Figure 6: Monte Carlo power using the asymptotic critical value against segregation alternatives
H \% /s (left) and H:% /4 (right) as a function of r, for n = 10. The circles represent the empiri-

cal significance levels while triangles represent the empirical power values. The r values plotted are
1,11/10, 12/10, 4/3, V2, , 2, 3, 5, 10.
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Figure 7: Two Monte Carlo experiments against the association alternative H \% 12" Depicted are kernel

density estimates for p,(11/10) for n = 10 (left) and n = 100 (right) under the null (solid) and alternative
(dashed).

10



1.0
1.0

0.8
1
0.8
1

power
power

0.4
1
0.4
1

0.2
0.2

0.0
0.0

Figure 8: Monte Carlo power using the asymptotic critical value against association alternatives

H\%/m (left) and H?\/g/u (right) as a function of », for n = 10. The r values plotted are

1, 11/10, 12/10, 4/3, V2, , 2, 3, 5, 10.

segregation alternative HS and association alternative HA, the PAE of p,(r) is given by

_ (@(r,e=0))? _ (W4(r,e=0))°
PAE® (r) = SVT and PAEA(r) = AT

respectively, since ps(r,e = 0) = p4(r,e = 0) = 0. Equation (9) provides the denominator; the numerator
requires u(r,€) which is provided in Appendix 2 for under both segregation and association alternatives,
where we only use the intervals of r that donot vanish as € — 0.

In Figure 9, we present the PAE as a function of r for both segregation and association. Notice that
PAES(r = 1) = 160/7 ~ 22.8571, lim,_,o, PAES(r) = oo, PAEA(r = 1) = 174240/17 ~ 10249.4118,
lim, 0o PAE(r) = 0, argsup,epy o) PAE*(r) & 1.006 with sup,¢(; o) PAE?(r) ~ 10399.7726. PAE*(r)
has also a local supremum at r; ~ 1.4356 with PAE4 (r1) ~ 3630.8932. Based on the asymptotic efficiency
analysis, we suggest, for large n and small €, choosing r large for testing against segregation and choosing r
small for testing against association.

4.4 Hodges-Lehmann Asymptotic Efficacy

Hodges-Lehmann asymptotic efficiency (HLAE) of p,,(r) (see e.g. [HL56]) under H? is given by

si. . (us(re) = pu(r))?
HLAES(r, €) := P

HLAE for association is defined similarly. Unlike PAE, HLAE does not involve the limit as e — 0. Since
this requires the mean and, especially, the asymptotic variance of p,(r) under an alternative, we investigate
HLAE for specific values of €. Figure 10 contains a graph of HLAE against segregation as a function of r for

e =+/3/8,v/3/4, 24/3/7. See Appendix 3 for explicit forms of ug(r,e) and vg(r,€) for € = \/3/4.

From Figure 10, we see that, against H?, HLAE®(r,€) appears to be an increasing function, dependent
on ¢, of 7. Let r4(€e) be the minimum r such that p,(r) becomes degenerate under the alternative HS. Then

11



1000 -

10000 1 |

800 1

8000 - ‘

600

PAES(r)

6000 - |

PAE“(r)

|
4007 4000 - \

200 2000
/
[
|

o 1 15 2 25 3 3.5 a o 1 .

Figure 9: Pitman asymptotic efficiency against segregation (left) and association (right) as a function of r.
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Figure 10: Hodges-Lehmann asymptotic efficiency against segregation alternative HS as a function of r for

€ =+/3/8,v/3/4,2v/3/7 (left to right).

ra(v/3/8) = 4, rq(v3/4) = 2, and r4(2v3/7) = 2. In fact, for € € (0,v3/4], ra(e) = V/3/(2¢) and for
€ € (V3/4,V3/3), ra(e) = V3/e — 2. Notice that lim, HLAE® (r,€) = oo, which is in agreement with
PAE® as € — 0; since as € — 0, HLAE becomes PAE and r4(¢) — oo and under Hy, p,,(r) is degenerate for
r = 00. So HLAE suggests choosing r large against segregation, but in fact choosing r too large will reduce

power since r > r4(€) guarantees the complete digraph under the alternative and, as r increases therefrom,
provides an ever greater probability of seeing the complete digraph under the null.

Figure 11 contains a graph of HLAE against association as a function of r for € = 5+/3/24, /3/12, v/3/21.
See Appendix 3 for explicit forms of p(r,€) and v4(r,€) for € = /3/12. Notice that since v(r,e) = 0 for
€ >/3/12, HLAEA(r = 1,€) = oo for € > /3/12 and lim,_,oo HLAEA(r,€) = 0.

In Figure 11 we see that, against HA, HLAE# (r,€) has a local supremum for r sufficiently larger than 1.
Let 7 be the value at which this local supremum is attained. Then #(5+/3/24) ~ 3.2323, 7#(v/3/12) ~ 1.5676,
and 7(v/3/21) ~ 1.533. Note that, as e gets smaller, 7 gets smaller. Furthermore, HLAEA (r = 1,/3/21) < 0o
and as € — 0, 7 becomes the global supremum, and PAEA(r = 1) = 0 and argsup,~, PAEA(r = 1) ~ 1.006.

So, when testing against association, HLAE suggests choosing moderate r, whereas PAE suggests choosing
small .
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Figure 11: Hodges-Lehmann asymptotic efficiency against association alternative HA as a function of r for

e =+/3/21, v/3/12, 5+/3/24 (left to right).

4.5 Asymptotic Power Function Analysis

The asymptotic power function (see e.g. [KS79]) can also be investigated as a function of r, n, and € using
the asymptotic critical value and an appeal to normality. Under a specific segregation alternative HZ, the
asymptotic power function is given by

TS(rme) =1 <Z<1—a> V() + v (ulr) — ps(r, e>)> |

vs(r,€)

where 2;_o = ®~1(1 — a). Under H*, we have

TAGn.e) = @ ( V) + V() = palr, e))) _

va(r,e)

Analysis of Figure 12 shows that, against H \% /g7 @ large choice of r is warranted for n = 100 but,

for smaller sample size, a more moderate r is recommended. Against H ég /120 8 moderate choice of r is
recommended for both n = 10 and n = 100. This is in agreement with Monte Carlo investigations.
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Figure 12: Asymptotic power function against segregation alternative H \% /g 82 function of r for n = 10

(first from left) and n = 100 (second) and association alternative H f}g /12 382 function of r for n = 10 (third)
and n = 100 (fourth).
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5 Multiple Triangle Case

Suppose Y is a finite collection of points in R? with || > 3. Consider the Delaunay triangulation (assumed

to exist) of ), where T; denotes the j" Delaunay triangle, J denotes the number of triangles, and Cg ()

denotes the convex hull of Y. We wish to test Ho : X; < U (Cu(Y)) against segregation and association

alternatives.

The digraph D is constructed using Ny, (-) as described in Section 2.3, where for X; € T} the three points
in Y defining the Delaunay triangle T are used as ). Let p,(r,J) be the relative density of the digraph
based on X, and Y which yields J Delaunay triangles, and let w; = A(T;)/A(Cu(¥)) for j = 1,...,J,
where A(Cy(Y)) = Ej:l A(T;) with A(-) being the area functional. Then we obtain the following as a
corollary to Theorem 2.

Corollary 1: The asymptotic null distribution for p,(r,J) conditional on W = {wy,...,ws} for r €
[1,00] is given by N (u(r, J),v(r, J)/n) provided that v(r,J) > 0 with

2
J

ulr, J) = ij, and v(r,J) := v(r Zw + 4u(r Zw - Zw , (12)

j=1

where p(r) and v(r) are given by equations (8) and (9), respectively.
Proof: See Appendix 4. &

By an appropriate application of Jensen’s Inequality, we see that ijl w? > (Z;Zl wf-)2. Therefore,

v(r,J) =0iff v(r) = 0 and ijl w} = (ijl w;‘-’)z, so asymptotic normality may hold even when v(r) = 0.

Similarly, for the segregation (association) alternatives with 4€?/3 x 100% of the triangles around the
vertices of each triangle is forbidden (allowed), we obtain the above asymptotic distribution of p,(r) with
u(r) being replaced by us(r,€), v(r) by vs(r,€), u(r,J), by ps(r, J,€), and v(r,J) by vs(r,J,€). Likewise
for association.

Thus in the case of J > 1, we have a (conditional) test of Hy : X; X, “u (Cu (Y)) which once again rejects

against segregation for large values of p,(r, J) and rejects against assoc1at10n for small values of p,(r,J).

Depicted in Figure 13 are the segregation (with § = 1/16 i.e. ¢ = 1/3/8), null, and association (with
§ = 1/4ie. e = /3/12) realizations (from left to right) with n = 1000, || = 10, and J = 13. For the
null realization, the p-value is greater than 0.1 for all » values and both alternatives. For the segregation
realization, we obtain p < 0.0031 for 1 < r < 5 and p > 0.24 for r = 1 and » > 10. For the association
realization, we obtain p < 0.0135for 1 < r <3, p= .14 for r =1, and p > 0.25 for for » > 5. Note that this
is only for one realization of X,.

1+
0.84
0.6
0.4

0.24

02 04 0’6 o8 02 [ 06 o8 02 [ 06 o8

Figure 13: Realization of segregation (left), Ho (middle), and association (right) for |Y| = 10, J = 13, and
n = 1000.
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Figure 14: Monte Carlo power using the asymptotic critical value against H \S/g /g> 38 2 function of r, for

n = 100 (left), n = 200 (middle), and n = 500 (right) conditional on the realization of ) in Figure 13. The
circles represent the empirical significance levels while triangles represent the empirical power values.
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Figure 15: Monte Carlo power using the asymptotic critical value against H f}g /12 38 function of r, for

n = 100 (left), n = 200 (middle), and n = 500 (right) conditional on the realization of ) in Figure 13. The
circles represent the empirical significance levels while triangles represent the empirical power values.

We implement the above described Monte Carlo experiment 1000 times with n = 100, n = 200, and n =
500 and find the empirical significance levels @s(n, J) and @4 (n, J) and the empirical powers 3 (r,/3/8, J)
and B\;:‘ (r, \/3/ 12, J). These empirical estimates are presented in Table 1 and plotted in Figures 14 and 15.
Notice that the empirical significance levels are all larger than .05 for both alternatives, so this test is liberal
in rejecting Hy against both alternatives for the given realization of J and n values. The smallest empirical
significance levels and highest empirical power estimates occur at moderate r values (r = 3/2, 2, 3) against
segregation and at smaller r values (r = v/2, 3/2) against association. Based on this analysis, for the given
realization of ), we suggest the use of moderate r values for segregation and slightly smaller for association.
Notice also that as n increases, the empirical power estimates gets larger for both alternatives.

The conditional test presented here is appropriate when the W are fixed, not random. An unconditional
version requires the joint distribution of the number and relative size of Delaunay triangles when ) is, for
instance, a Poisson point pattern. Alas, this joint distribution is not available [OBSC00].

5.1 Related Test Statistics in Multiple Triangle Case

For J > 1, we have derived the asymptotic distribution of p,(r, J) = |A|/(n (n—1)). Let A; be the number of

arcs, nj := | X, NT;|, and pn, (r) be the arc density for triangle T} for j = 1,...,J. So ijl %pni (r) =
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r | 1 Jujiof[e6/5 [ 43 ] v2 [ 32 ] 2 | 3 | 5 | 10
n =100, N = 1000

as(n, J) 0.144 | 0.141 | 0.124 | 0.101 | 0.095 | 0.087 | 0.070 | 0.075 | 0.071 | 0.072
BS(r,v/3/8,J) | 0.191 | 0.383 | 0.543 | 0.668 | 0.714 | 0.742 | 0.742 | 0.625 | 0.271 | 0.124
aan,J) 0.118 | 0.111 | 0.089 | 0.081 | 0.065 | 0.062 | 0.067 | 0.064 | 0.068 | 0.071

BA(r,v/3/12,J) | 0.231 | 0.295 | 0.356 | 0.338 | 0.269 | 0.209 | 0.148 | 0.095 | 0.113 | 0.167
n = 200, N = 1000
as(n,J) 0.095 | 0.092 | 0.087 | 0.077 | 0.073 | 0.076 | 0.072 | 0.071 | 0.074 | 0.073
B5(r,\/3/8,J) | 0.135 | 0.479 | 0.743 | 0.886 | 0.927 | 0.944 | 0.959 | 0.884 | 0.335 | 0.105
aa(n,J) 0.071 | 0.071 | 0.062 | 0.057 | 0.055 | 0.047 | 0.038 [ 0.035 | 0.036 | 0.040
BA(r,v/3/12,J) | 0.182 | 0.317 | 0.610 | 0.886 | 0.952 | 0.985 | 0.972 | 0.386 | 0.143 | 0.068
n = 500, N = 1000
as(n,J) 0.080 | 0.092 | 0.087 | 0.086 | 0.080 | 0.078 | 0.079 | 0.079 | 0.076 | 0.081
BS(r,v/3/8,J) | 0.145 | 0.810 | 0.981 | 0.997 | 0.999 | 1.000 | 1.000 | 1.000 | 0.604 | 0.130
aa(n,J) 0.087 | 0.085 | 0.076 | 0.075 | 0.073 | 0.075 | 0.072 | 0.067 | 0.066 | 0.061
BA(r,v/3/12,J) | 0.241 | 0.522 | 0.937 | 1.000 | 1.000 | 1.000 | 1.000 | 0.712 | 0.187 | 0.063

Table 1: The empirical significance level and empirical power values under H 5— 3/8 and H A 312 N = 1000,
n = 100, and J = 13, at a = .05 for the realization of ) in Figure 13.

n; (n;j—1) _ Z;'I=1 |A;] _ A _
pn(r, J), since Z] 1 “n(n=D) pn; (1) = =) — n(‘n_ll) = pn(r, J).
Let U, := ijl w3 pn; (r) where w; = A(T;)/A(Cx (Y)). Since py,(r) are asymptotically independent,
\/ﬁ(ﬁn — u(r,J)) and /n(p,(r,J) — p(r, J)) both converge in distribution to N (0, v(r, J)).

In the denominator of p,(r,J), we use n(n — 1) as the maximum number of arcs possible. However,
by definition, we can at most have a digraph with J complete symmetric components of order n;, for

j =1,...,J. Then the maximum number possible is n; := Z}'I:1 nj(nj —1). Then the (adjusted) arc
density is pfthJ = ‘:‘;l. Then p“dj( ) = Ej%w = Z]J ) %ﬁl)pn.(r). Since %ﬁl) > 0 for each j,

and Z]J | %i) =1, p”dJ (r) is a mixture of p,,(r)’s. Then pad] (r) is asymptotically normal with mean

E[pp%(r)] = u(r, J) and the variance of p}%(r) is

|0 (s ) e (Str w1

Jj=1 Jj=1

5.2 Asymptotic Efficacy Analysis for J > 1

The PAE, HLAE, and asymptotic power function analysis are given for J = 1 in Sections 4.3, 4.4, and 4.5,
respectively. For J > 1, the analysis will depend on both the number of triangles as well as the size of the
triangles. So the optimal r values with respect to these efficiency criteria for J = 1 do not necessarily hold
for J > 1, hence the analyses need to be updated, given the values of J and W.

Under segregation alternative HS | the PAE of p,(r, J) is given by

(u(r, Jye = 0))" _ (5(r.e=0) ©I_, w3 )2
v(r, J) v(r) Sjoy wf +aps(re = 02 (T, v — (T2 w3)?)

PAES(r) =

Under association alternative H;“ the PAE of p,(r,J) is similar. In Figure 16, we present the PAE as a
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Figure 16: Pitman asymptotic efficiency against segregation (left) and association (right) as a function of r
with J = 13. Notice that vertical axes are differently scaled.
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Figure 17: Hodges-Lehmann asymptotic efficiency against segregation alternative HS as a function of r for
€= \/3/8, \/5/4,2\/?_)/7 (left to right) and J = 13.

function of r for both segregation and association conditional on the realization of ) in Figure 13. Notice that,
unlike J = 1 case, PAE](r) is bounded. Some values of note are PAES (p,,(1)) = .3884, lim,_, o, PAE(r) =

J 2
8 i ~ 139.34, argsup,c(i o PAES(r) ~ 1.974. As for association, PAES(r = 1) =

j=1"%j
256 (50 wi- (27 03)”)
422.9551, lim, oo PAE7 (r) = 0, argsup,, PAE7(r) = 1.5 with PAE(r = 1.5) ~ 1855.9672. Based on the
asymptotic efficiency analysis, we suggest, for large n and small €, choosing moderate r for testing against

segregation and association.

Under segregation, the HLAE of p,(r, J) is given by

. (us(r, J,€) — ulr, T))? (s(r:€) (S w) = 0r) (i 03)
HLAEj(r,€) := = ¥ ¥ 5 -
vs(r,J,e) vs(r,€) Sy wl +4ps(r, 2 (T, w! — (S, w?)?)

Notice that HLAES (r,e = 0) = 0 and lim_,o, HLAES (r, €) = 0 and HLAE is bounded provided that v(r, .J) >

0.
We calculate HLAE of p,(r, J) under H? for ¢ = \/3/8, €= \/§/4, and € = 2\/?_)/7. In Figure 17 we
present HLAE?(T’, €) for these e values conditional on the realization of ) in Figure 13. Note that with
e =+/3/8, HLAES (r = 1,4/3/8) ~ .0004 and argsup, (1, oo] HLAES (r,v/3/8) ~ 1.8928 with the supremum ~
.0544. With e = /3/4, HLAES (r = 1,/3/4) ~ .0450 and argsup,.c[; o] HLAEj (r,/3/4) ~ 1.3746 with the
supremum = .6416. With e = 2v/3/7, HLAES(r = 1,2+/3/7) &~ .045 and argsup,¢[1 o) HLAES (r,2v/3/7) »
1.3288 with the supremum = .9844. Furthermore, we observe that HLAES(r,2+/3/7) > HLAE3(r,/3/4) >
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HLAEZ(r,/3/8). Based on the HLAE analysis for the given )V we suggest moderate r values for moderate
segregation and small r values for severe segregation.

The explicit form of HLAE/ (r,€) is similar to HLAES(r,€) which implies HLAE(r,e = 0) = 0 and
lim_, . HLAEY (r,€) = 0.

We calculate HLAE of p,(r, J) under H2 for € = v/3/21, € = v/3/12, and € = 5+/3/24. In Figure 18 we
present HLAE? (r, €) for these e values conditional on the realization of ' in Figure 13 Note that with e =

0.18 ~
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Figure 18: Hodges-Lehmann asymptotic efficiency against association alternative HA as a function of r for
€ =+/3/21,/3/12,5/3/24 (left to right) and J = 13.

V3/21, HLAE} (r = 1,V/3/21) ~ .0009 and argsup,[; o) HLAE# (r,v/3/21) ~ 1.5734 with the supremum
~ .0157. With e = v/3/12, HLAE} (r = 1,V/3/12) ~ .0168 and argsup,c[; o) HLAES (r,/3/12) ~ 1.6732
with the supremum ~ .1818. With e = 5+/3/24, HLAE/ (r = 1,5+/3/24) ~ .0017 and

argsup,.c(1, ool HLAE#(r,5/3/24) ~ 3.2396 with the supremum = 5.7616. Furthermore, we observe that

HLAE/ (r,5+/3/24) > HLAE (r,+/3/12) > HLAE/(r,/3/21). Based on the HLAE analysis for the given
Y we suggest moderate r values for moderate association and large r values for severe association.

6 Discussion and Conclusions

In this article we investigate the mathematical properties of a random digraph method for the analysis of
spatial point patterns.

The first proximity map similar to the r-factor proximity map N7, in literature is the spherical proximity
map Ng(z) := B(z,r(x)), (see the references for CCCD in the Introduction). A slight variation of Ng is the
arc-slice proximity map Nag(x) := B(z,7(z)) N T(z) where T(x) is the Delaunay cell that contains x (see
[CP03a)). Furthermore, Ceyhan and Priebe introduced the central similarity proximity map N¢g in [CP03a]
and N3, in [CP03b]. The r-factor proximity map, when compared to the others, has the advantages that
the asymptotic distribution of the domination number ~, (N3,) is tractable (see [CP03b]), an exact minimum
dominating set can be found in polynomial time. Moreover N3, and N¢s are geometry invariant for uniform
data over triangles. Additionally, the mean and variance of relative density p, is not analytically tractable
for Ng and Nas. While Nj,(z), Ncs(z), and Nas(x) are well defined only for z € C()), the convex hull
of Y, Ng(z) is well defined for all z € R?. The proximity maps Ng and N4g require no effort to extend to
higher dimensions.

The Ng (the proximity map associated with CCCD) is used in classification in the literature, but not
for testing spatial patterns between two or more classes. We develop a technique to test the patterns
of segregation or association. There are many tests available for segregation and association in ecology
literature. See [Dix94] for a survey on these tests and relevant references. Two of the most commonly used
tests are Pielou’s x? test of independence and Ripley’s test based on K (t) and L(t) functions. However, the
test we introduce here is not comparable to either of them. Qur test is a conditional test — conditional on a

18



realization of J (number of Delaunay triangles) and W (the set of relative areas of the Delaunay triangles)
and we require the number of triangles .J is fixed and relatively small compared to n = |X,,|. Furthermore,
our method deals with a slightly different type of data than most methods to examine spatial patterns. The
sample size for one type of point (type X points) is much larger compared to the the other (type Y points).
This implies that in practice, ) could be stationary or have much longer life span than members of X'. For
example, a special type of fungi might constitute X points, while the tree species around which the fungi
grow might be viewed as the ) points.

There are two major types of asymptotic structures for spatial data [Lah96]. In the first, any two
observations are required to be at least a fixed distance apart, hence as the number of observations increase,
the region on which the process is observed eventually becomes unbounded. This type of sampling structure
is called “increasing domain asymptotics”. In the second type, the region of interest is a fixed bounded
region and more or more points are observed in this region. Hence the minimum distance between data
points tends to zero as the sample size tends to infinity. This type of structure is called “infill asymptotics”,
due to Cressie [Cre91]. The sampling structure for our asymptotic analysis is infill, as only the size of the
type X process tends to infinity, while the support, the convex hull of a given set of points from type Y
process, Cy(Y) is a fixed bounded region.

Moreover, our statistic that can be written as a U-statistic based on the locations of type X points with
respect to type Y points. This is one advantage of the proposed method: most statistics for spatial patterns
can not be written as U-statistics. The U-statistic form avails us the asymptotic normality, once the mean
and variance is obtained by tedious detailed geometric calculations.

The null hypothesis we consider is considerably more restrictive than current approaches, which can be
used much more generally. The null hypothesis for testing segregation or association can be described in two
slightly different forms [Dix94]:

(i) complete spatial randomness, that is, each class is distributed randomly throughout the area of interest.
It describes both the arrangement of the locations and the association between classes.

(if) random labeling of locations, which is less restrictive than spatial randomness, in the sense that ar-
rangement of the locations can either be random or non-random.

Our conditional test is closer to the former in this regard. Pielou’s test provide insight only on the association
between classes, hence there is no assumption on the allocation of the observations, which makes it more
appropriate for testing the null hypothesis of random labeling. Ripley’s test can be used for both types of
null hypotheses, in particular, it can be used to test a type of spatial randomness against another type of
spatial randomness.

The test based on the mean domination number in [CP03b] is not a conditional test, but requires both
n and number of Delaunay triangles J to be large. The comparison for a large but fixed J is possible.
Furthermore, under segregation alternatives, the Pitman asymptotic efficiency is not applicable to the mean
domination number case, however, for large n and J we suggest the use of it over arc density since for each
€ > 0, Hodges-Lehmann asymptotic efficiency is unbounded for the mean domination number case, while it
is bounded for arc density case with J > 1. As for the association alternative, HLAE suggests moderate r
values which has finite Hodges-Lehmann asymptotic efficiency. So again, for large J and n mean domination
number is preferable. The basic advantage of p,(r) is that, it does not require J to be large, so for small J
it is preferable.

Although the statistical analysis and the mathematical properties related to the r-factor proximity catch
digraph are done in R?, the extension to R? with d > 2 is straightforward. See Ceyhan and Priebe [CP03b]
for more detail on the construction of the associated proximity region in higher dimensions. Moreover, the
geometry invariance, asymptotic normality of the U-statistic and consistency of the tests hold for d > 2.
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Appendix 1: Derivation of y(r) and v(r)

In the standard equilateral triangle, let y; = (0,0), y» = (1,0), y5 = (1/2,v/3/2), Mc be the center of
mass, M; be the midpoints of the edges e; for j = 1,2,3. Then M¢ = (1/2,V/3/6), M1 = (3/4,v/3/4),
M, = (1/4,4/3/4), M5 = (1/2,0).

Recall that E [p(r)] = gy ¥ s Elhi] = 3B [hu2] = () = P(X; € N(X2)).

Let X,, be a random sample of size n from U(T(Y)). For 1 = (u,v), £,.(z1) = v +7v/3u — /3 2. Next,
let Ny := £.(x1) Nez and Ny := £,.(x1) Nez. Then for 2y € Ty := T(y1, M3, Mc), N3,(21) = T(y1, N1, N2)
provided that £,.(z1) is not outside of T'()’), where

N = (r (y1 + V321)v3/3,0) and No = (r (y1 + V321)V3/6, (y1 + V3z1)r/2).
Now we find u(r) for r € [1,00).
First, observe that, by symmetry,
p(r) = P(Xy € N3 (X)) =6 P(X, € N (X1), Xy € T).

Let £,(r,z) be the line such that r d(y1, s(r,z)) = d(y1,e1) and £y(r,z) NT (V) # 0, so £y(r,z) = V3(% — z).
Then if z; € Ty is above £5(r, ) then Ny (21) = T(Y), otherwise, NJ,(z1) = Tr(x1) C T().

For r € [1,3/2), £s(r,x) N Ty = 0, so Njy(x1) = Tr(x1) € T(Y) for all z € Ts. Then

37
dydx = 1296 ro.

1/2 z/\/§A r T

where A(Nj,(x1)) = ‘1/—2§r2(y +v32)? and A(T(Y)) = V3/4. Hence for r € [1,3/2), p(r) = 2L r2.

For r € [3/2,2), £s(r,z) crosses through MsM . Let the z coordinate of ¢s(r,xz) Ny1 M be s1, then
s1 = 3/(4r). See Figure 19 for the relative position of £,(r, z) and Ts.

Then

1/2 pz/V3 D (@1
P(X, € N;;(Xl),Xl €T,) :A /0 %

_ [ AN (@) 2 AN (1)) Ve
= / / AT ) dyd“/sl / AT dyd“/m /W) AT () M

_—36+7’4 +64r — 3272
48 r2 )

dydz

Hence for r € [3/2,2), u(r) = —§r* —8r + §r 2 + 4.

For r € [2,00), £5(r, z) crosses through y; M 5. Let the z coordinate of £,(r, )Ny M 5 be s2, then so = 1/r.
See Figure 19.
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y3 = (1/27 \/5/2)

I (r =2, m)
Ly(r = 1.75,z)
€1
ls(r =4, ) e
Mg
yi = (0,0) S1 82 M3 €3 y2 = (1,0)

Figure 19: The cases for relative position of £,(r, ) with various r values.

Then

51 w/\/§A T (21 s2 pls(r) A(NT 1
P(X, € Nj(X1), X1 € T,) =/ / %dydm/ / %dydw

z/V3 12 rz/V3 1 —3+2¢2
/ /e(rz)ATy dyd:c+/ / Ty dyd$_127r2 .

Hence for r € [2,00), pu(r) =1— 3,72

For r = o0, u(r) = 1 follows trivially.
To find Cov [h12, h13], we introduce a related concept.

Definition: Let (2, M) be a measurable space and consider the proximity map N : Q x p(Q) — p(Q),
where p(-) represents the power set functional. For B C , the I'i-region, I'1(-) = T (-, N) : @ = p(Q)
associates the region I'1 (B) := {z € 0 : B C N(z)} with each set B C Q). For z € Q, we denote I'; ({z}) as
Ty (z). Note that I';-region depends on proximity region N(-).

Furthermore, let I'; (-, N3,) be the I'i-region associated with NJ,(-), let A;; be the event that {X;X; €
A} ={X; € Nﬂ}(XJ)}, then h;; = I(A,'j) + I(Aj,'). Let

PQTN = P({XQ,X3} C N&(Xl)), P& = P(X2 S N;;(Xl),X:g S Fl(XlaNS-})) PQTG = P({XQ,X;;} C FI(X17N§)))
Then Cov [hlg,hw] =E [h12 h13] - E [hlz]E [h13] where

Elhizhiz] = E[(I(A12) +I(A21)) (I(A13) + I(As1)]
= P(A12NA13)+ P(A1a N Azy) + P(As N Agz) + P(Ag N Asy).
= P({X»,X3} C N(X1)) +2P(Xa € N3(X1), X5 € T'1(X1,N})) + P({X2, X3} C T1(X1,N3))
= Py +2P} + Pg.

So v(r) = Cov [hia, his] = (Pyy + 2 Py + Pig) — [2 pu(r)]?.

Furthermore, for any z; = (u,v) € T()), T'1(z1, N3,) is a convex or nonconvex polygon. Let &;(r,z) be
the line between 1 and the vertex y; parallel to the edge e; such that r d(y;, &;(r,x)) = d(y;,£-(z1)) for j =
1,2,3. Then Ty (21, N3,) N R(y;) is bounded by &;(r, #) and the median lines.
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Figure 20: The prototypes of the six cases for I'y (21, N3,) for z € T(y1, M3, Mcc) for r € [4/3,3/2).
For 21 = (u,v), &(r,2) = —V3z+ (v+V3u)/r, &(r,z) = (v+V3r (z—1)+/3(1—w))/r and &(r,2) =
(V3(r=1)+2v)/(27).

To find the covariance, we need to find the possible types of 'y (z1, N3;) and N3,(z1) for r € [1,00). First
we find the possible intersection points of £y () with 0(T'(Y)) and 9(R(y;)) for j = 1,2,3. Let

G1 = fl(’l‘, 55)063, G2 = 52(7', ﬂf)ﬂ€3, G3 = fg(’l‘, x)ﬁel, G4 = 53(7', a:)ﬂel, G5 = 53(’!‘, 55)062, G(j = fl(’f', Ilf)ﬂeg.

Then, for example, G5 = ((\/?Tr—\/Gi+2 y)\/§’ \/§r72\/7‘§+2y) . Furthermore, let

L = fl(f‘,.’L') NMiMg, Ly = §Q(T,IE) NMiMg, Lz = 62(7',.’1}) NMsMqo, Ly = 53(7‘,.’1}) NMsMq, Ls =
53(7", .CL') N ]\/[3]\/[07 L6 = 51(7", .CL') n MgMC.

Then for example Ly =

_(\/'37‘—3 V3+6 y)V3 \/57‘7\/§+2y) Then Fl(xl Ni})
67 ’ 27 : )
are a subset of the y;, M¢, M;, j=1,2,3 and Gy, L;, j =1,...,6.

is a polygon whose vertices

See Figure 20 for the prototypes of I'y (z1, N3},) with » € [4/3,3/2).

We partition [1, 00) with respect to the types of NJ)(z1) and T'y (z1, N3,) into [1,4/3), [4/3,3/2), [3/2,2), [2, 00).
For demonstrative purposes we pick the interval [4/3,3/2). For r € [3,3), there are six cases regard-
ing T'1(21,N};) and one case for Nj(x1). Each case j corresponds to the region R; in Figure 21 where
s1=1-2r/3, s2=3/2—7r, s3=1—7r/2, 54 =3/2—57/6, s5 =3/2—3r/4.
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Figure 21: The regions corresponding to the six cases for r € [4/3,3/2)

Let #(a1,as,...,a,) denote the polygon with vertices a1, as,...,an, then, for z1 = (z,y) € Rj, j =
.,6, Fl(ml,NS}) are W(Gl,Ml,Mc,M&Gg), (@(Gl, Ml,Lz,Lg, Mc,M3,G6), c@(Gl,GQ,GE},MQ, Mc,Mg,Ge),
.@(Gl,Ml,LQ,L3,L4,L5, M3,G6), y(G1,G2,G3, MQ,L4,L5, M3,G6) and 9(G1,G2,G3,G4,G5,G6), respec-
tively.

The explicit forms of R;, j =1,...,6 are as follows:
= {(z,y) €[0,51] X [0, Lam(2)] U [s1,82] X [g1(2), Lam ()]}
= {(z,y) € [s1,82] X [0,¢1(2)] U[s2,83] X [0, q2(2)] U 3, 54] X [g3(7), g2(2)]}
= {(z,y) € [s3,84] X [0,3(2)] U [s4,1/2] x [0, g2(2)]}
R4 = {(z,y) € [s2,84] X [q2(@), Lam ()] U [54, 56] X [g3(2), Lam (@)]}
= {(z,y) € [54,56] X [q2(x), g3(x)] U[s6,1/2] x [g2(x), qa ()]}
= {(z,y) € [s6,1/2] x [ga(2), Lam (2)]},

where Lo (2) = 2/V3, i(x) = 27 —3)/vV3+ V32, g2(x) = V3(1/2 —1/3), g3(x) = V3 (x — 1+ 7r/2), and
au(z) =V3(1/2=r/4).

Then P({X2,X3} C N3(X1)) = roea-r*. (We use the same limits of integration in p(r) calculations
with the integrand being A(N3,(z1))?/A(T(Y))?.

Next, by symmetry, P({XQ,Xg} C F1(X1,N§;)) = 6P({X2,X3} C F1(X1,N§;), X € T(y,Mg,Mc)).
Then

6
P({XQ,XB} C Fl(Xl,NS")); X, € T(y,M3,M(j)) = ZP({XQ,X3} - Fl(X1,N§;), X € Rj).
j=1

For example, for z1 € Ry,

tem(@) ATy (21, N3))?
X, X3} Cc T1(X1,N}), X1 € Ry) / / — LY dyd
P({Xe Xa} CTa(X0, WD), X1 € Fa) a(2) ATY)))?
/ /am<w>Ar1 (z1,N3))? dyds _ 96377* — 89640 r® + 288360 1 — 3628807 + 155520
g3(z) y)) 349920 7‘2

where A(F1($1,N5})) V3(9r2+18—24 r+4/3ry— 18z41r26:c2 +14y24+12r2—8 2 V3y— efy)
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Similarly, we calculate for j = 1,2,3,5,6 and get

—47880 75 — 3888072 + 25687 % — 1080 r* + 60480 r® + 3888

—47880 7% — 3888072 + 25687 r5 — 1080 r* + 60480 r3 + 3888
5832074 '

Furthermore, P(X, € N}(X1), X3 € Ty(X1,N}), X1 € T(y, M3, Mc)) = Y5, P(X» € N3(X1), X €
Ti(X1,N}), X1 € Ry).

For example, 1 € Ry, we get — o= 72 (207360 + 404640 r* — 483840 r — 142920 ° + 17687 r*) by using
the same integration limits as above, with the integrand being A(N%,(21)) A(T1 (21, N3)) /AT (V))?.

Similarly, we calculate for j =1,2,3,5,6 and get

1206 ~ 648 T 12960

. . 5467 35 37 13 83
P(X; € Ny(X1), X3 € T1(X1,N})) = 6 ( 6 ’ 4 2 )

9799360 " 2502 " T

4 1
BA6T o 35 5 37 4 13, 83

466560 ' 432" 216" 108 2160

So, E[hi12 ki3] = [5467r'% — 37800 r° + 89292 r® + 46588 r® — 191520 +° + 13608 r* + 2419203 — 155520 r% +
15552]/[233280 ).

Thus, for r € [4/3,3/2), v(r) = [5467r'° — 37800 r° + 61912 r® + 46588 r® — 191520 r> + 13608 r* + 241920 r* —
155520 % + 15552]/[233280 r*].

Appendix 2: pu(r,e) for Segregation and Association Alternatives

Derivation of u(r,€) involves detailed geometric calculations and partitioning of the space of (r,€,z1) for
r € [1,00), € € [0,/3/3), and z; € T,.

us(r,€) Under Segregation Alternatives

Under segregation, we compute pus(r,€) explicitly. For e € [0,v/3/8), us(r,e) = Z;=1 p,i(r,e)I(r € I;)
where
576 7% — 1152 €* — 3717 + 288 ¢*
216 (2¢ + 1)2(2e — 1)2 :
pia(r,e) = —[576 7' —11527%* + 917" + 512 V313 4 2592 7°€” 4 1536 V3re® + 1152 ¢*
— 76873 — 2304 V/3r%e — 6912 r¢> — 2304 V3> + 1728 1> + 3456 V/3re + 5184 €
—1728r — 1728 V/3¢ + 648]/[216 72 (2 € + 1) (2 — 1)7],
p1s(r,e) = —[1927%* — 384 r%e* + 9r* 4+ 864 17> + 512V/3re® + 384 € — 2304 re” — 768 V/3¢®
— 28877 41728 €% 4 576 7 — 324]/[72 72 (2€ + 1)*(2¢ — 1)?],
pra(r,e) = —[1927%€* —384r%e* —9r* — 96 V313 + 2881%” — 128 €* + 14412 + 576 V/3r e + 256
V3e® — 72077 — 1152 V/3re — 576 € + 11527 + 768 v/3e — 612]/[72 77 (2 € + 1)* (2 — 1)),
487" — 962 + 72r%® —32€* + 643> —18r% — 144 €% 4+ 27

p1a(re) = —

ps(rie) = = 1872(2€ + 1)2(2e — 1)2 ’

(r.e) = 487" + 256 r3¢* — 128 /3r®€® + 288 r’¢* — 192/3r°€® 4+ 727%¢* + 187” + 48 /3¢ — 45
K6t €)= 18 (2e +1)2(2€ — 1)2r2 ’
par(rye) =1,
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with the corresponding intervals Z; = [1,3/2 — v3¢), o = [3/2 — V3¢,3/2), Tz = [3/2,2 — 4¢/V/3),
Ty =[2—-4€¢/V3,2), Ts = [2,v/3/(2€) = 1), Ts = [V/3/(2€) — 1,v/3/(2¢€)), and Z; = [v/3/(2¢€), ).

For € € [\/5/8a \/3/6)7 /J'S('ra 6) = E;:l H2,j (Ta 6) I(T € IJ) where /J'2,j('ra 6) = H1,j (7‘, 6) for J=12, 47 9,6,
and for j = 3,7,
p2,3(r €) = —[576 r'e* — 1152 7%* + 37" + 224 V3r’e + 864 r°¢”> — 384 €* — 336 r° — 576 V/3r’e
+ 768 V/3€® +4321° — 1728 > 4 576 /3¢ — 216]/[216 7> (2 € + 1)*(2€ — 1)°],
p2,7(re) =1,

with the corresponding intervals Z; = [1,3/2 — v/3€), o = [3/2 — V3 ¢€,2 — 4¢/V/3), Ts = [2 — 4€//3,3/2),
Ty =[3/2,2), Is = [2,V3/(2€) — 1), Ts = [V/3/(2¢€) — 1,V/3/(2¢)), and Zs = [V/3/(2¢), 00).

For € € [v/3/6,v/3/4), us(r,e) = Z?Zl ps,j(r,€) I(r € Z;) where ps 1(r,€) = py,2(r, €) and

psa(re) = —[576 71" —11527%€* 4+ 377" + 224 V313 4+ 864 1°¢” — 384 €" — 33612 — 576 V/3r’e
+ 768 V/3€ + 43277 — 1728 €® + 576 V3¢ — 216]/[216 7> (2 € + 1)* (2 — 1)7],

p33(rye) = [576 r’e* + 3072 re* — 1536 V/3re® + 3456 €* — 2304 V/3€® — 3712 — 224 V/3re
+ 864 € + 336 + 576 v/3e — 432]/[216 (2 4+ 1)*(2e — 1),

paa(re) =[192 r'e* + 1024 r3¢* — 512/3r%¢® + 1152 r%¢* — 768 V/3r%e® + 9r* 4+ 96 v/3r’e + 288 r2¢®
—1447® — 576 V3r’e 4+ 720 r® + 1152 V/3re — 1152 7 — 576 v/3e + 540]/[72 72 (2 € + 1)*(2e — 1)?],

48 rtet + 256 r3e* — 128 v/3r3e® + 288 rZet — 192 v/3r2e® + 72 r%e? + 18 1% 4+ 48 /3¢ — 45
1872(2e +1)2(2¢ — 1)2 ’

pas(r,€) =
u3e(re) =1,

with the corresponding intervals Z; = [1,2—4¢/v/3), o = [2—4€¢/v3,v/3/(2€)—1), I3 = [V3/(2¢€)—1,3/2),
Iy = [3/272)7 s = [27\/5/(2 6))7 and Zs = [\/3/(26)700)

For € € [v/3/4,v/3/3), us(r,e) = 2321 pa,j(r,€) I(r € Z;) where
_97‘262 +2\/?_>r2e+48r52 +r2— 16\/57"6— 90¢2 — 12r+36\/§e
18 (3¢ — v/3)2 ’
paa(r,e) = —[9rte* — 4V/3rte® + 4813 — 48 V/3r3® — 90 r%e* 4 36 r’e® + 96 V/3rPe® — 126 12€”
—32V3re® —48¢* +36 V3r’e + 144 e’ + 96 V3e® — 187 — 72V3re — 216 + 36 7
+72V3e — 27)/[2 (3¢ — V3)*r?),
pas(r,e) =1,

pa(r,e) =

with the corresponding intervals Z; = [1,3 — 2¢/v/3), o = [3 — 2¢/v/3,V/3/e — 2), and T3 = [V/3/e — 2, 0).
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pa(r,e) Under Association Alternatives

Under association, we compute pa(r,e) explicitly. For € € [0,(7v3 — 3V15)/12 ~ .042), pa(r,e) =
Z?Zl p1,i(r,€) I(r € Z;) where

pa1(ry€) = —[3456 €' + 9216 €' — 3072 V3 r* — 17280 €'r® — 3072 V3> r® + 2304 €°r*

+ 4608 V/3€®r” — 2304 €r® + 6336 €" + 6144 V3’ r + 6912 €”r” 4+ 512 V3er®

—1017* — 6144 V3e® — 11520 €°r — 1536 V/3er” + 256 7 + 5760 € + 1536 V/3e 7

— 38477 —512/3¢ + 256 7 — 64]/[24 (6 € + V/3)? (6 € — V/3)*r?],
p,o(ry€) = —[1728 €'r* — 1536 V3e®r* — 31104 €*r” 4 1152 €”r* 4 15552 €” + 10368 ¢*r® — 377"

— 20736 €°r + 10368 €7]/[24 (6 € + V/3)? (6 € — v/3)*r7],
p1,3(ry€) = [—2592 €*r* — 2304 V3e®r* — 46656 ¢*r® + 1728 €°r* 4 10656 €* — 9216 V3¢ r

+ 9072 > — 432 V3er® — 157 + 12288 V/3€® — 13824 €*r + 1728 V/3er? — 21672

+ 4032 € — 2304 V3er + 43277 + 1024 /3¢ — 3847 + 128]/[36 (6 € + V/3)* (6 € — V/3)*r?],
1728 €*r* — 1536 v/33r* — 31104 €72 4+ 1152 %r* — 5184 €* 4 2592 %12 — 371 — 3456 €2

24(66+\/_)2 6e —/3)2r2 ’
rs(r ) = 9(1152€*r? +192€* —192€%r? — r* + 12862 + 3272 — 647 + 36)
8 (6¢+v3)2(6¢ — /3)2r2
9(r+6)(r—2)°

8 (6€+3)2(6e—/3)2r2’

with the corresponding intervals 7; = [1, %), I, = [1“\}/;7: 4 3\/56) Ty = [4(1*3\/56, 4(1+§\/§e)7
_ [4a0+2v3¢ 3 _ 3 _
1y = [ 3 72(17\/56))715— [m,Q) andIe_[Q,oo).

For e € [(7\/3 - 3\/ﬁ)/127 \/5/12)7 MA(ra 6) = E?:l /1’20'(7'7 6) I(T‘ € Zj) where H2,j ('f‘, 6) = /‘Lj(r: 6) for
j=1,3,4,56and

H1,4 (T7 6) = -

H1,6 (Tv 6) = -

po,2(r,€) = [—3456 1" 4+ 111 7" — 5184 €'r* + 4608 v3e*r* — 336 v/3er® — 168 1° — 13824 €*r°
+ 4608 V3e>r® 4 3456 €2r° + 1447 — 6912 V/3e®r? — 3888 €’r® + 576 V/3er”
+ 25920 €'r? + 3168 € + 2880 € — 256 /3¢ — 32 — 3072 v/3€%]/[36 (V3 + 6 €)’(—6 € + V/3)’r”

with the corresponding intervals 7; = [1, 41-v3e) (173\/56)), T = [4(1 V3¢) 1+2‘/§€) Ts = [1+2\/§€ 4(1+2‘/§f),

\/§e 1—\/567 3
7, — [4(1+2\/§e 3 )
4= 3 > 2(1—v3¢)

— 3 —
5 = [m,Q) and IG = [27 OO)

For € € [v/3/12,V3/3), pa(r,€) = Y0, ps,;(r,€) I(r € T;) where

(r.€) 2r2 —1
rE) = ———
N3,1 ) 6’(‘2 )

psa(r,€) = [432€'rt + 1152 €% — 576 V361! + 1296 €r? — 960 V3> r® + 864 21! — 864 v/3€°r?
+ 576 €213 — 192/3er* — 360 €* 4 648 €21 + 64 v/3er® + 481" +192/3€> — 144 v/3e 12
— 647° — 504 €% + 7272 + 88 /3¢ — 25]/[16 (3¢ — V3)*r?],
—54€2r2 + 36/3er2 + 1562 — 1872 + 24/3¢ + 20

r,e) = — )
H3(r,€) 6 (—3 €+ /3)2r2
with the corresponding intervals Z; = [1, 21(%‘\/[;_’2)), I3 = [21&2{%’; T \/ée)) Is = [2(1_73\/56),00)-
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Appendix 3: u(r,e) and v(r,e) for Segregation and Association Al-
ternatives with Sample ¢ values

| ~1,2 4 40, 3 for r€(1,3/2)
With € = v/3/4, r € [1,2), us(r,v3/4) = {H “ 48y +122r2*128T+48 for r€[3/2,2)

vs(r,v/3/4) = Z] 11/;(7‘,\/_/4) (Z;) where

vi(r,V/3/4) = —[14285 r" — 28224 r® — 233266 r° + 1106688 r* — 2021199 r* + 1876608 r”
— 880794 r + 165888]/[3645 7],

vo(r, V3/4) = —[14285 r'° — 28224 7° — 233266 r° + 1106688 " — 1234767 r® — 3431808 r°
+ 14049126 7* — 22228992 r* + 18895680 r” — 8503056 r + 1594323]/[3645 ],

va(r,V/3/4) = —[14285 r'® — 28224 r° — 233266 r° + 1106688 " — 2545713 r® + 5903280 r°
— 13456044 r* 4 20636208 r® — 18305190 r* + 8503056  — 1594323]/[3645 r*],

va(r,V/3/4) = [104920 r® — 111072 r” + 1992132 75 — 15844032 r° + 50174640 r* + 6377292
— 34012224 r 4 73220760 r* — 81881280 r° + 1909 +'° — 27072 r°]/[14580 r*],

vs(r,V3/4) = —[—1187904 r° + 1331492 r® + 433304 7> + 611163 7'° — 850240 r° — 198144 1
+ 955392 7' — 705536 r° — 387680 r'* + 1118472 r® — 1308960 ” + 175984 r'*
— 46176 7% + 5120 7'* + 56016]/[20 r*],

and

and the corresponding intervals are Z; = [1,3), I, = [9/8,9/7), I3 = [9/7,4/3), Ts = [4/3,3/2), I5 =
[3/2,2).

4 3 2
6r°—16r 4;187‘ —5 for r c [1,2)

Withezﬁ/12,pA(r,¢§/12):{ 187 and v4(r,v/3/12) = z L vi(r,V/3/12) I(Z;)

-
=32 4+1 for r € [2,00)
where

vi(r,V/3/12) = [10r'% — 96 7' + 240 7% 4+ 1927° — 1830 r® + 3360+ — 2650 r® + 2407° + 1383 r*
— 12807 4 54077 — 144 + 35]/[405 r°],

va(r,V/3/12) = [10r'% — 96 7' + 240 ™% 4+ 1927° — 1670 r® + 2784 77 — 2650 r® + 2400 r° — 1047 r*
— 1280 7% 4+ 1269 7% — 144 + 35]/[405 r°],

5377 — 683 7% — 24487 + 1315
12
,\/§/ )= 405 r6
The corresponding intervals are Z; = [1,3/2), I, = [3/2,2), Z3 = [2,0).

Appendix 4: Proof of Corollary 1

In the multiple triangle case,

pu(r, J) = E[pn(r)] = nn=1) Z Z E[hi;] = %E[hlz] = E[I(A12)] = P(A12) = P(X2 € Ny(X1)).

i<j
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But, by definition of Nj,(-), P(X2 € N},(X1)) = 0if X; and X are in different triangles. So by the law of
total probability

J
/J(’I',J) = P(Xz EN{;(Xl)) :ZP(XQ EN;;(Xl)'{Xl,XQ} CTj)P({Xl,XQ}CTj)

J
= ZM(T)P({Xth} CTj) (since P(Xz € Ny(X1) [{X1, X2} CTj) = p(r))

J
= u(r) Y (AT)/ACCEY))?  (since P({X1, X2} C Tj) = (A(T3)/A(Cr(V)))*)

j=1
Letting w; := A(T;)/A(Cru(Y)), we get u(r,J) = p(r) - (Z‘JI L Wj 2) where pu(r) is given by equation (8).
Furthermore, the asymptotic variance is

I/(’f', J) = E [hlz h13] —-E [hlz]E [h13]
P({X2, X3} C N3(X1)) + 2 P(X5 € Nj(X1), X3 € Ty (X1, N}))
+P({X2, X3} C T1(X1, N3)) — 4 (u(r, J))*.

Then for J > 1, we have

J
P({X2, X35} C Ny(X1)) = ZP({XZ;X:s} C Ny(X1) [{ X1, Xo, X3} C T;) P({X01, X3, X3} C Tj)
J
= ZP2N T)/A(CE(V)))® = P3y Zw

Similarly, P(X2 S Ng;(Xl) X3 € Fl(leN:;})) PM (Z] 1 ws ) and ({XQ,Xg} C Fl(Xl,Ny)) P2TG (Zj:l ’LU?),
hence, v(r,J) = (P + 2P + i) (X1 wf) — 4(u(r, 1)* = v(r) (z, vwd) + apr)? () wl -
[

(ijl w2-)2), so conditional on W, if v(r, J) > 0 then /ni (pn(r) — p(r, J)) = N(0, v(r, J)).

J
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