Dissertation Defense

Limit Theory for the Domination Number of Random Class Cover Catch Digraphs

Pengfei Xiang

xiang@jhu.edu

Department of Applied Mathematics and Statistics

The Johns Hopkins University

- Abstract mathematical model:
	- $\ \ \Diamond \ \ (\Omega,X,Y).$
	- \diamond Random data: $\bigl(c(\Psi),\Psi\bigr)$ with the class label part $c(\Psi) \in \{X, Y\}$ and the data part $\Psi \in \Omega$.
	- \diamond Prior probabilities: $P_X, P_Y.$ Class-conditional distribution functions: $F_X, F_Y.$
- Classifier:
	- $\diamond~$ For an observation $\big(c(\psi), \psi\big)$, given the data part ψ , guess the unknown class label part $c(\psi)$.

Consider two sequences of i.i.d. random variables:

$$
X_i \sim F_X, i = 1, \cdots, n,
$$

$$
Y_j \sim F_Y, j = 1, \cdots, m.
$$

- Covering ball: For X_i , define its covering ball as $B(X_i) \equiv \left\{ \omega \in \Omega : d(X_i, \omega) < \min_{j \in \{1, \dots, m\}} d(X_i, Y_j) \right\}.$
- Class cover: A subset of covering balls whose union contains all X_i 's.
- Class cover problem: Find ^a minimum cardinality class cover.
- Definition: The CCCD induced by ^a CCP is the digraph $D = (V, A)$ with the vertex set $V = \{X_i, i =$ $1, \dots, n$ and the edge set A such that $(X_i, X_j) \in A$ iff $X_j\in B(X_i).$
- Dominating set: The set $S\subset V$ is a dominating set of a digraph $D=(V,A)$ iff for all $v\in V$, either $v\in S,$ or $(s, v) \in A$ for some $s \in S$.
- The CCP is equivalent to finding ^a minimum dominating set of the induced CCCD.
- CCCD and CCP in high dimensions are NP-Hard.

Construction of a CCCD

Figure 1: An illustration of the construction of ^a CCCD

- Definition: The domination number of a CCCD is the cardinality of the CCCD's minimum dominating set.
- Notation: letting $\mathcal{X}\equiv\{X_1,\cdots,X_n\}$ and $\mathcal{Y}\equiv\{Y_1,$ $\cdots, Y_m\}$, we denote the domination number by $\Gamma_{n,m}(\mathcal{X},\mathcal{Y})$, or simply by $\Gamma_{n,m}$.
- Research direction: The probabilistic limiting behavior of $\Gamma_{n,m}$.

For the special case of $\Omega = {\bf R}$ and $F_X = F_Y = U[0,1],$

- $\bullet\,$ Denote $Y_{(j)}$ as the j th order statistic of $Y_1,\cdots,Y_m,$ and define $Y_{(0)}\equiv 0, Y_{(m+1)}\equiv 1$.
- Let random variable $N_{j,m}$ be the number of X-points between $Y_{(i)}$ and $Y_{(i+1)}$, and $\alpha_{j,m}$ be the minimum number of covering balls needed to cover these $N_{j,m}$ X -points.

•
$$
\Gamma_{n,m} = \sum_{j=0}^m \alpha_{j,m}.
$$

Under the above assumptions, Priebe, Devinney and Marchette find the conditional distribution of $\alpha_{j,m}$ given $N_{i,m}$. Furthermore, Devinney and Wierman prove the following strong law of large numbers (SLLN) for $\Gamma_{n,m}$:

Theorem 1. If $\Omega = \mathbf{R}, F_X = F_Y = U[0,1]$, and $m\equiv m(n)=\lfloor rn\rfloor,$ $r\in (0,\infty),$ then

$$
\lim_{n \to +\infty} \frac{\Gamma_{n,m}}{n} = g(r) \equiv \frac{r(12r+13)}{3(r+1)(4r+3)} \quad a.s.
$$

SLLN in One Dimension with General Densities

In this dissertation, we have proved the SLLN in one dimension for the more general case:

Theorem 2. If $\Omega = \mathbf{R}$, f_X and f_Y are bounded and continuous density functions, and $m/n \rightarrow r$, $r \in (0,\infty)$, then

$$
\lim_{n \to \infty} \frac{\Gamma_{n,m}}{n} = \int g\left(r \cdot \frac{f_Y(u)}{f_X(u)}\right) \cdot f_X(u) du \qquad a.s.
$$

where'e $g(r)\equiv \frac{r(12r+13)}{3(r+1)(4r+3)}$ (same as in the SLLN for uniform densities).

Proof sketch:

- Extend the result for uniform density functions to piece-wise constant densities.
- Construct piece-wise constant approximation to the bounded continuous function case.

Proof of the SLLN(2)

Figure 2: Illustration of the proof of the SLLN

Corollary 1. Under the same conditions as in the SLLN, we have

$$
\int g\left(r \cdot \frac{f_Y(u)}{f_X(u)}\right) \cdot f_X(u) du \le g(r)
$$

with equality holding iff $f_X=f_Y\quad a.e.$

Applications Build some statistical test for equality of the distributions.

Variance of the Domination Number in One Dimension

Since $\Gamma_{n,m}=\sum \alpha_{j,m},$ we only need to calculate the variances and covariances of the components: **Theorem 3.** If $\Omega = \mathbf{R}, F_X = F_Y = U[0,1]$ and $m/n \to r$, $r\in(0,\infty)$, then $V \$ $Var(\alpha_{j,m}) = \frac{144r^3 + 360r^2 + 237r + 20}{9(r+1)^2(4r+3)^2} + o(1),$ $Cov(\alpha_{j_1,m},\alpha_{j_2,m})\!=\!\tfrac{-r^2(2304r^4+9984r^3+16096r^2+11440r+3025)}{9(r+1)^3(4r+3)^4}\cdot\tfrac{1}{m}+o\!\left(\tfrac{1}{m}\right).$ Hence,

$$
\frac{Var(\Gamma_{n,m})}{m} \to v(r) \equiv \frac{1536r^5 + 6848r^4 + 11536r^3 + 8836r^2 + 2793r + 180}{9(r+1)^3(4r+3)^4}.
$$

The calculation is very technical (taking about 40 pages in the dissertation). It's essentially done in two steps:

- first, we get the conditional expectations $E(\alpha_{i,m}^k | N_{j,m}), k = 1, 2$, using the conditional probability of $\alpha_{i,m}$ given $N_{i,m}$;
- $\bullet\,$ then we compute $E(\alpha_{j,m}^k), k=1,2,$ using $N_{j,m}$'s distribution. Note that given $L_{j,m} = l_{j,m}, j=0,$ $\cdots, m,$ the random vector $\{N_{j,m}: j=0,\cdots,m\}$ is multinomially distributed with parameters ${n, l_{i,m} : j = 0, \cdots, m}$, where the distribution of $L_{i,m}$ can be easily calculated.

Verification of the Limiting Variance Formula

Central Limit Theorem (CLT) in One Dimension

Theorem 4. If $\Omega = \mathbf{R}, F_X = F_Y = U[0,1]$, and $m/n \to r$, $r\in(0,\infty)$, then

$$
\frac{1}{m^{1/2}} \left(\Gamma_{n,m} - E[\Gamma_{n,m}]\right) \xrightarrow{\mathcal{L}} N(0, \sigma^2)
$$
\nwhere $\sigma^2 = \lim_{m \to \infty} \frac{Var[\Gamma_{n,m}]}{m}.$

- Issue: Recall $\Gamma_{n,m} = \sum$ $m \$ $j=0$ $\alpha_{j,m}.$ Note that $\alpha_{j,m}$ solely depends on $N_{i,m}$, but $N_{i,m}$'s are dependent on each other. In fact, $N_{j,m}$'s are *negatively* associated.
- Solution: Project $\Gamma_{n,m}$ onto a conditional probability space where all the components $\alpha_{i,m}$'s become independent of each other, then apply the SLLN and CLT for negatively associated random variables.

Define \mathcal{F}_m as the σ -field generated by $N_{j,m}, j=0,\cdots,$ $m_{\scriptscriptstyle{\bullet}}$. Let $Z_{j,m} = \frac{1}{m^{1/2}} \big(\alpha_{j,m} - E[\alpha_{j,m}] \big)$. Then define the conditional characteristic function $f_m(t)$ as follows:

$$
f_m(t) = E\left[e^{it\sum_{j=0}^m Z_{j,m}} | \mathcal{F}_m\right]
$$

=
$$
\prod_{j=0}^m E\left[e^{itZ_{j,m}} | \mathcal{F}_m\right],
$$

where the last step holds because $Z_{j,m}$'s are independent given \mathcal{F}_m .

Applying the Taylor expansion yields

$$
f_m(t) \approx \prod_{j=0}^m \left(1 + itE[Z_{j,m} \mid N_{j,m}] - \frac{t^2}{2} E[Z_{j,m}^2 \mid N_{j,m}] \right),
$$

hence

$$
log(f_m(t)) \approx it \sum_{j=0}^{m} E[Z_{j,m} | N_{j,m}] - \frac{t^2}{2} \sum_{j=0}^{m} Var[Z_{j,m} | N_{j,m}],
$$

thus

$$
E\left[e^{it\sum_{j=0}^{m}Z_{j,m}}\right] = E\left[f_m(t)\right]
$$

$$
\approx E\left[e^{it\sum_{j=0}^{m}E[Z_{j,m}|N_{j,m}]}\right] \cdot E\left[e^{-\frac{t^2}{2}\sum_{j=0}^{m}Var[Z_{j,m}|N_{j,m}]}\right]
$$

$$
\rightarrow e^{-\frac{t^2\sigma_1^2}{2}} \cdot e^{-\frac{t^2\sigma_2^2}{2}} = e^{-\frac{t^2\sigma_2^2}{2}}.
$$

Weak Law of Large Numbers (WLLN) in 2 Dimensions

The CCCD problem becomes much more challenging in higher dimensions. Applying the SLLN for subadditive processes, we have proved the following WLLN in 2 dimensions.

Theorem 5. If the densities f_X and f_Y are positive, bounded and continuous on $[0,1]^2$, and $m/n\to r,$ $r\in (0,\infty)$, then

$$
\lim_{n \to \infty} \frac{\Gamma'_{n,m}}{n} = \iint g\left(r \cdot \frac{f_Y(u,v)}{f_X(u,v)}\right) \cdot f_X(u,v) du dv \quad \text{in probability.}
$$

 \leftarrow [previous](#page-16-0) slide

Proof Sketch of the WLLN in 2 Dimensions

The proof is done in three steps:

- 1. apply the SLLN for subadditive processes to prove the SLLN for the domination number in the Poisson case;
- 2. use the result in the Poisson case to prove the WLLN for the domination number in $[0,1]^2$ with uniform densities;
- 3. extend the result above to the case with general densities.

Definition of 2-dimensional

Subadditive Processes

Let $\{X_{s,t}: 0 \le s < t, s,t \in \mathbb{R}^2\}$ be a collection of random variables. Then $\{X_{s,t}\}$ is called a 2-dimensional subadditive process if it satisfies

- Subadditivity: For disjoint squares $I_i = \{u : a_i \le u < b_i, a_i, b_i \in \mathbb{R}^2\},$ if $I=\cup_{i=1}^n I_i$ is also a square, then $X_I\leq \sum_{i=1}^n X_{I_i}$.
- Stationarity: The joint distributions of $\{X_{I_1+u},\cdots,X_{I_n+u}\}$ is the same as that of $\{X_{I_1}, \cdots, X_{I_n}\}$, where $u \in \mathbf{R}^2.$
- Expectation Condition: $\gamma(X) \equiv \inf_I \left\{ \frac{E[X_I]}{|I|} : I = [a_i, b_i], a_i, b_i \in \mathbb{R}^2 \right\} > -\infty.$

Illustration of 2-dimensional

Subadditive Processes

Figure 4: Subadditivity: $X_{\cup_{i=1}^{n} I_i} \leq \sum_{i=1}^{n} X_{I_i}$

SLLN for Multidimensional Subadditive Processes

The above definition can be easily generalized to the multidimensional case. Akcoglu and Krengel proved that

Theorem 6. If $\{X_{s,t}\}$ is a multidimensional subadditive process, then

$$
\lim_{n \to \infty} \frac{X_{J_n}}{|J_n|} = \zeta \quad a.s.
$$

and $E[\zeta] = \gamma(X)$, where $J_n = [\vec{0}, n \vec{e})$ with $\vec{0} = (0, \cdots, 0)$ and \rightarrow $\vec{e} = (1, \cdots, 1).$ Note: if $\{X_{s,t}\}\)$ is independent, then $\zeta = \gamma(X)\ a.s.$

Subadditivity of the Domination Number in 2 dimensions (1)

Suppose X and Y are Poisson process points in \mathbb{R}^2 . Let Γ_I denote the domination number generated by these X and Y points in any rectangles $I\subset {\bf R}^2.$

• Issue: $\{\Gamma_I\}$ is *not* a subadditive process.

Figure 5: Non-subadditivity of $\{\Gamma_I\}$

Subadditivity of the Domination Number in 2 dimensions (2)

- Idea: Find ^a subadditive process that approximates $\{\Gamma_I\}$.
- Solution: Restrain the covering balls in I , and refer to corresponding domination number as constrained domination number, denoted by $\bar{\Gamma}$ $\mathbf{1}$ I . Then $\{ \bar{\Gamma}$ $_I\}$ is subadditive.

Since $\{\bar{\Gamma}% (\overline{\Gamma})\}_{(\Gamma(\overline{\Gamma})\backslash\{0\}}$ $_I\}$ is a multidimensional subadditive process, we have

$$
\lim_{n \to \infty} \frac{\bar{\Gamma}_{J_n}}{|J_n|} = \zeta \quad a.s. \quad \text{with } E[\zeta] = \gamma(\Gamma).
$$

Then we generalize this result to the SLLN for the original domination number $\Gamma_{J_n}.$

Next, we transfer the result in the Poisson case to $[0, 1]^2$.

- Conditioning on the $(n + 1)$ th arrival of X-points, suppose there are n X-points and m_n Y-points uniformly distributed in $J_{t(n)}$.
- But we need m Y -points for the desired result in $[0, 1]^2$.
- So we uniformly add $m m_n$ or delete $m_n m$ Y -points.
- We argue that the effect of adding or deleting $|m - m(n)|$ Y points is negligible, so the WLLN holds in $[0,1]^2$ with uniform densities.
- We basically follow the same idea as in one dimension to extend the WLLN with uniformdensities to general densities.
- But the detailed proof is much more complicated, since adding or deleting a X or Y point no longer only changes the domination number by at most 2 as in one dimension.

We ha ve used Monte Carlo simulations to chec k thelimit theorems obtained in this dissertation, and also empirically verified some limit theorems that are not pro ved but are likely to be true, such as the CLT in tw o dimensions.

- CLT in 2 or higher dimensions.
- Other properties of CCCDs, such as the edge density.