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Background: Pattern Classification

• Abstract mathematical model:
¦ (Ω, X, Y ).
¦ Random data:

(

c(Ψ),Ψ
)

with the class label part
c(Ψ) ∈ {X, Y } and the data part Ψ ∈ Ω.
¦ Prior probabilities: PX , PY .

Class-conditional distribution functions: FX , FY .
• Classifier:
¦ For an observation

(

c(ψ), ψ
)

, given the data part
ψ, guess the unknown class label part c(ψ).
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Class Cover Problem

Consider two sequences of i.i.d. random variables:

Xi ∼ FX , i = 1, · · · , n,

Yj ∼ FY , j = 1, · · · ,m.

• Covering ball: For Xi, define its covering ball as

B(Xi) ≡
{

ω ∈ Ω : d(Xi, ω) < min
j∈{1,··· ,m}

d(Xi, Yj)
}

.

• Class cover: A subset of covering balls whose
union contains all Xi’s.

• Class cover problem: Find a minimum cardinality
class cover.
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Class Cover Catch Digraph

• Definition: The CCCD induced by a CCP is the
digraph D = (V,A) with the vertex set V = {Xi, i =
1, · · · , n} and the edge set A such that (Xi, Xj) ∈ A

iff Xj ∈ B(Xi).
• Dominating set: The set S ⊂ V is a dominating set

of a digraph D = (V,A) iff for all v ∈ V , either v ∈ S,
or (s, v) ∈ A for some s ∈ S.

• The CCP is equivalent to finding a minimum
dominating set of the induced CCCD.

• CCCD and CCP in high dimensions are NP-Hard.
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Construction of a CCCD
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Figure 1: An illustration of the construction of a

CCCD
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Domination Number

• Definition: The domination number of a CCCD is
the cardinality of the CCCD’s minimum dominating
set.

• Notation: letting X ≡ {X1, · · · , Xn} and Y ≡ {Y1,
· · · , Ym}, we denote the domination number by
Γn,m(X ,Y), or simply by Γn,m.

• Research direction: The probabilistic limiting
behavior of Γn,m.
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Previous Results (1)

For the special case of Ω = R and FX = FY = U [0, 1],
• Denote Y(j) as the jth order statistic of Y1, · · · , Ym,

and define Y(0) ≡ 0, Y(m+1) ≡ 1.

• Let random variable Nj,m be the number of
X-points between Y(j) and Y(j+1), and αj,m be the
minimum number of covering balls needed to
cover these Nj,m X-points.

• Γn,m =
∑m

j=0 αj,m.
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Previous Results (2)

Under the above assumptions, Priebe, Devinney and
Marchette find the conditional distribution of αj,m given
Nj,m. Furthermore, Devinney and Wierman prove the
following strong law of large numbers (SLLN) for Γn,m:

Theorem 1. If Ω = R, FX = FY = U [0, 1], and
m ≡ m(n) = brnc, r ∈ (0,∞), then

lim
n→+∞

Γn,m

n
= g(r) ≡

r(12r + 13)

3(r + 1)(4r + 3)
a.s.
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SLLN in One Dimension with General
Densities

In this dissertation, we have proved the SLLN in one
dimension for the more general case:

Theorem 2. If Ω = R, fX and fY are bounded and continuous
density functions, and m/n→ r, r ∈ (0,∞), then

lim
n→∞

Γn,m

n
=

∫

g

(

r ·
fY (u)

fX(u)

)

· fX(u)du a.s.

where g(r) ≡ r(12r+13)
3(r+1)(4r+3) (same as in the SLLN for uniform

densities ).
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Proof of the SLLN(1)

Proof sketch:
• Extend the result for uniform density functions to

piece-wise constant densities.
• Construct piece-wise constant approximation to

the bounded continuous function case.
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Proof of the SLLN(2)
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Figure 2: Illustration of the proof of the SLLN
Dissertation Defense – p. 11/31



One Corollary of the SLLN

Corollary 1. Under the same conditions as in the SLLN, we have

∫

g

(

r ·
fY (u)

fX(u)

)

· fX(u)du ≤ g(r)

with equality holding iff fX = fY a.e.

Applications Build some statistical test for equality of
the distributions.
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Variance of the Domination Number
in One Dimension

Since Γn,m =
∑

αj,m, we only need to calculate the
variances and covariances of the components:

Theorem 3. If Ω = R, FX = FY = U [0, 1] and m/n→ r,
r ∈ (0,∞), then

V ar(αj,m) = 144r3+360r2+237r+20
9(r+1)2(4r+3)2 + o (1),

Cov(αj1,m,αj2,m)=
−r2(2304r4+9984r3+16096r2+11440r+3025)

9(r+1)3(4r+3)4 · 1m+o
(

1
m

)

.

Hence,
V ar(Γn,m)

m → v(r) ≡ 1536r5+6848r4+11536r3+8836r2+2793r+180
9(r+1)3(4r+3)4 .
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Calculation of the Variance

The calculation is very technical (taking about 40
pages in the dissertation). It’s essentially done in two
steps:

• first, we get the conditional expectations
E(αk

j,m | Nj,m), k = 1, 2, using the conditional
probability of αj,m given Nj,m;

• then we compute E(αk
j,m), k = 1, 2, using Nj,m’s

distribution. Note that given Lj,m = lj,m, j = 0,

· · · ,m, the random vector {Nj,m : j = 0, · · · ,m} is
multinomially distributed with parameters
{n, lj,m : j = 0, · · · ,m}, where the distribution of Lj,m

can be easily calculated.
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Verification of the Limiting Variance
Formula
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Figure 3: Verification of lim
n→∞

V ar(Γn,m)
m

= v(r)
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Central Limit Theorem (CLT) in One
Dimension

Theorem 4. If Ω = R, FX = FY = U [0, 1], and m/n→ r,
r ∈ (0,∞), then

1

m1/2

(

Γn,m − E[Γn,m]
) L
→ N(0, σ2)

where σ2 = lim
m→∞

V ar[Γn,m]
m .
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Proof of the CLT (1)

• Issue: Recall Γn,m =
m
∑

j=0
αj,m. Note that αj,m solely

depends on Nj,m, but Nj,m’s are dependent on
each other. In fact, Nj,m’s are negatively
associated.

• Solution: Project Γn,m onto a conditional probability
space where all the components αj,m’s become
independent of each other, then apply the SLLN
and CLT for negatively associated random
variables.

next slide →
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Proof of the CLT (2)

Define Fm as the σ-field generated by Nj,m, j = 0, · · · ,

m. Let Zj,m = 1
m1/2

(

αj,m − E[αj,m]
)

. Then define the
conditional characteristic function fm(t) as follows:

fm(t) ≡ E
[

eit
∑m

j=0
Zj,m | Fm

]

=
m
∏

j=0

E
[

eitZj,m | Fm

]

,

where the last step holds because Zj,m’s are
independent given Fm.
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Proof of the CLT (3)

Applying the Taylor expansion yields

fm(t) ≈
m
∏

j=0

(

1 + itE[Zj,m | Nj,m]− t2

2 E[Z2j,m | Nj,m]
)

,

hence

log
(

fm(t)
)

≈ it
m
∑

j=0
E[Zj,m | Nj,m]− t2

2

m
∑

j=0
V ar[Zj,m | Nj,m],

thus

E
[

eit
∑m

j=0
Zj,m

]

=E
[

fm(t)
]

≈E
[

eit
∑m

j=0
E[Zj,m|Nj,m]

]

·E

[

e− t2

2

∑m
j=0

V ar[Zj,m|Nj,m]

]

→e−
t2σ2

1

2 · e−
t2σ2

2

2 = e− t2σ2

2 .
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Weak Law of Large Numbers (WLLN)
in 2 Dimensions

The CCCD problem becomes much more challenging
in higher dimensions. Applying the SLLN for
subadditive processes, we have proved the following
WLLN in 2 dimensions.
Theorem 5. If the densities fX and fY are positive, bounded and
continuous on [0, 1]2, and m/n→ r, r ∈ (0,∞), then

lim
n→∞

Γ′
n,m

n
=

∫∫

[0,1]2

g

(

r·
fY (u, v)

fX(u, v)

)

· fX(u, v)dudv in probability.

← previous slide
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Proof Sketch of the WLLN in 2
Dimensions

The proof is done in three steps:

1. apply the SLLN for subadditive processes to prove
the SLLN for the domination number in the
Poisson case;

2. use the result in the Poisson case to prove the
WLLN for the domination number in [0, 1]2 with
uniform densities;

3. extend the result above to the case with general
densities.

Dissertation Defense – p. 21/31



Definition of 2-dimensional
Subadditive Processes

Let {Xs,t : 0 ≤ s < t, s, t ∈ R
2} be a collection of random

variables. Then {Xs,t} is called a 2-dimensional
subadditive process if it satisfies

• Subadditivity:
For disjoint squares Ii = {u : ai ≤ u < bi, ai, bi ∈ R

2},
if I = ∪n

i=1Ii is also a square, then XI ≤
∑n

i=1XIi.

• Stationarity:
The joint distributions of {XI1+u, · · · , XIn+u} is the
same as that of {XI1

, · · · , XIn}, where u ∈ R
2.

• Expectation Condition:
γ(X) ≡ infI

{E[XI ]
|I| : I = [ai, bi), ai, bi ∈ R

2
}

> −∞.
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Illustration of 2-dimensional
Subadditive Processes
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Figure 4: Subadditivity: X∪n
i=1

Ii
≤

∑

n

i=1 XIi

Dissertation Defense – p. 23/31



SLLN for Multidimensional
Subadditive Processes

The above definition can be easily generalized to the
multidimensional case. Akcoglu and Krengel proved
that
Theorem 6. If {Xs,t} is a multidimensional subadditive process,
then

lim
n→∞

XJn

|Jn|
= ζ a.s.

and E[ζ] = γ(X), where Jn = [~0, n~e) with ~0 = (0, · · · , 0) and
~e = (1, · · · , 1).

Note: if {Xs,t} is independent, then ζ = γ(X) a.s.
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Subadditivity of the Domination
Number in 2 dimensions (1)

Suppose X and Y are Poisson process points in R
2.

Let ΓI denote the domination number generated by
these X and Y points in any rectangles I ⊂ R

2.
• Issue: {ΓI} is *not* a subadditive process.
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Figure 5: Non-subadditivity of {ΓI}
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Subadditivity of the Domination
Number in 2 dimensions (2)

• Idea: Find a subadditive process that
approximates {ΓI}.

• Solution: Restrain the covering balls in I, and refer
to corresponding domination number as
constrained domination number, denoted by Γ̄I .
Then {Γ̄I} is subadditive.
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SLLN in the Poisson Case

Since {Γ̄I} is a multidimensional subadditive process,
we have

lim
n→∞

Γ̄Jn

|Jn|
= ζ a.s. with E[ζ] = γ(Γ).

Then we generalize this result to the SLLN for the
original domination number ΓJn.
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WLLN in [0, 1]2 with Uniform Densities

Next, we transfer the result in the Poisson case to
[0, 1]2.

• Conditioning on the (n+ 1)th arrival of X-points,
suppose there are n X-points and mn Y -points
uniformly distributed in Jt(n).

• But we need m Y -points for the desired result in
[0, 1]2.

• So we uniformly add m−mn or delete mn −m
Y -points.

• We argue that the effect of adding or deleting
|m−m(n)| Y points is negligible, so the WLLN
holds in [0, 1]2 with uniform densities.
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WLLN in [0, 1]2 with General Densities

• We basically follow the same idea as in one
dimension to extend the WLLN with uniform
densities to general densities.

• But the detailed proof is much more complicated,
since adding or deleting a X or Y point no longer
only changes the domination number by at most 2
as in one dimension.
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Simulation

We have used Monte Carlo simulations to check the
limit theorems obtained in this dissertation, and also
empirically verified some limit theorems that are not
proved but are likely to be true, such as the CLT in two
dimensions.
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Future Research Directions

• CLT in 2 or higher dimensions.
• Other properties of CCCDs, such as the edge

density.
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