KOÇ UNIVERSITY MATH 203 - MULTIVARIABLE CALCULUS Mid Term 1 March 18, 2017 Duration of Exam:90 minutes

INSTRUCTIONS: You can NOT use calculators in the exam. No books, no notes, and no talking allowed. You must always explain your answers and show your work to receive full credit. Use the back of these pages if necessary. Print (use CAPITAL LETTERS) and sign your name, and indicate your section below.

Name: \qquad
Surname: \qquad

Signature: \qquad

Varga Kalantarov
Instructor (Check One):
Ayberk Zeytin

PROBLEM	POINTS	SCORE
1	20	
2	20	
3	20	
4	20	
5	20	
TOTAL	$\mathbf{1 0 0}$	

1. (20 points) Let L be the line that passes through the origin and parallel to the line of intersection of the planes

$$
x+2 y-z=2 \text { and } 2 x-y+4 z=5
$$

Write an equation of L.
2. (20 points) Compute the following limits if exists, else show that the limit does not exist:
(a) $\lim _{(x, y) \longrightarrow(0,0)} \frac{x y^{2}}{\sqrt{x^{2}+y^{2}}}$
(b) $\lim _{(x, y) \longrightarrow(0,0)} \frac{\sin \left(\sqrt{x^{2}+y^{2}}\right)}{x^{2}+y^{2}}$
(c) $\lim _{(x, y) \longrightarrow(0,0)} \frac{x^{3} y}{2 x^{6}+y^{2}}$
3. (20 points) Given

$$
f(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}
$$

calculate

$$
f_{11}(x, y, z)+f_{22}(x, y, z)+f_{33}(x, y, z) .
$$

4. (20 points) (a) Use the definition of differentiability to show that if f is differentiable at some point (a, b) in its domain, then f is continuous at (a, b).
(b) Is the function $f(x, y)=\sin \left(\sqrt{x^{2}+y^{2}}\right)$ differentiable at $(0,0)$? Why?
5. (20 points) Find an equation of the tangent plane AND normal line to the surface

$$
z \sin \left(x+y^{2}\right)-2 x^{2}+e^{z}=0
$$

at the point $(-1,1, \ln (2))$.

