On Edge Orbits and Cyclic and r-Pyramidal Hypergraph Designs

Saad I. El-Zanati

Department of Mathematics, Illinois State University, Normal, IL 61790-4520, USA

Let \mathbb{Z}_{n} denote the group of integers modulo n and let $\mathcal{E}_{n}^{(k)}$ be the set of all k-element subsets of \mathbb{Z}_{n} where $1 \leq k<n$. If $E \in \mathcal{E}_{n}^{(k)}$, let $[E]=\left\{E+r: r \in \mathbb{Z}_{n}\right\}$. Then $[E]$ is the orbit of E where \mathbb{Z}_{n} acts on $\mathcal{E}_{n}^{(k)}$ via $(r, E) \mapsto E+r$. Furthermore, $\left\{[E]: E \in \mathcal{E}_{n}^{(k)}\right\}$ is a partition of $\mathcal{E}_{n}^{(k)}$ into \mathbb{Z}_{n}-orbits. We show how to count the total number of \mathbb{Z}_{n}-orbits of $\mathcal{E}_{n}^{(k)}$, count the number of orbits of each size, and determine the corresponding results when fixed points are introduced. We also give an application to cyclic and r-pyramidal decompositions of certain classes of uniform hypergraphs into isomorphic subgraphs.

