Labeling the vertices of a graph

Canan Çiftçi
Ege University
canan.ciftci@ege.edu.tr
(joint work with Aysun Aytaç)

Let G be a simple, connected graph. For a vertex subset $S \subseteq V, \bar{S}=V(G)-S$ denotes the complement of S with respect to $V(G)$. The shortest distance in G between two vertices u and v is denoted by $d(u, v)$. For any vertex u, let $d(u, S)=\min _{v \in S} d(u, v)$. Then $d(u, S)=0$ and only if $u \in S$. The total influence number of a vertex $v \in S$ is $\eta_{T}(v)=\sum_{u \in \bar{S}} \frac{1}{2^{d(u, v)}}$. The total influence number of a vertex subset S is $\eta_{T}(S)=\sum_{v \in S} \eta_{T}(v)=\sum_{v \in S} \sum_{u \in \bar{S}} \frac{1}{2^{d(u, v)}}$. The total influence number of a graph G is $\eta_{T}(G)=\max _{S \subseteq V} \eta_{T}(S)$. A set S is called η_{T}-set if $\eta_{T}(S)=\eta_{T}(G)$. In this paper, we give a general theorem related to the total influence number and we also show how to find a maximum total influence set on some splitting graphs.

MSC2000: 68R10, $68 \mathrm{M} 10,05 \mathrm{C} 78$.

Keywords: Network design and communication; influence number; total influence number; splitting graph.

