The Minimum Number of Vertices in Uniform Hypergraphs with Large Domination Number

Balázs Patkós

MTA Rényi Institute patkos.balazs@renyi.mta.hu

(joint work with Csilla Bujtás, Zsolt Tuza and Máté Vizer)

The domination number $\gamma(\mathcal{H})$ of a hypergraph $\mathcal{H} = (V(\mathcal{H}), E(\mathcal{H})$ is the minimum size of a subset $D \subseteq V(\mathcal{H})$ of the vertices such that for every $v \in V(\mathcal{H}) \setminus D$ there exist a vertex $d \in D$ and an edge $H \in E(\mathcal{H} \text{ with } v, d \in H$. We address the problem of finding the minimum number $n(k, \gamma)$ of vertices that a k-uniform hypergraph \mathcal{H} can have if $\gamma(\mathcal{H}) \geq \gamma$ and \mathcal{H} does not contain isolated vertices. We prove that

 $n(k,\gamma) = k + \Theta(k^{1-1/\gamma})$

and also consider the s-wise dominating and the distance-l dominating version of the problem. In particular, we show that the minimum number $n_{dc}(k, \gamma, l)$ of vertices that a connected kuniform hypergraph with distance-l domination number γ can have is roughly $\frac{k\gamma l}{2}$.

MSC2000: 05D05, 05C65, 05C69.

Keywords: hypergraph domination, extremal set systems.