In the last decade designs over finite fields, introduced in the seventies, have received a considerable attention in view of their applications in error-correction in randomized network coding. They generalize classical designs in terms of vector spaces as follows. A design with parameters $t-(v, k, \lambda)$ over the finite field \mathbb{F}_q, briefly a $t-(v, k, \lambda)_q$ design, is a pair $(\mathcal{V}, \mathcal{B})$ where \mathcal{V} is the v-dimensional vector space over \mathbb{F}_q and \mathcal{B} is a collection of k-dimensional subspaces of \mathcal{V} such that each t-dimensional subspace of \mathcal{V} is contained in precisely λ members of \mathcal{B}.

In this talk I will give some insight into the problems we encountered as well as the results we obtained in determining necessary conditions on the existence of designs over finite fields with a prescribed automorphism group [1, 3].

Then I will focus my attention on the q-analogues of Steiner systems, that are designs over \mathbb{F}_q having $\lambda = 1$. They are of particular interest because of their versatility; they indeed can be also viewed as (t, k)-spreads of PG($v - 1, q$) or perfect $(v, k, 2k - 2t + 2)$-constant dimension codes. Finally, we briefly discuss possible automorphisms of the putative 2-$(7, 3, 1)_q$ design, the q-analogue of the Fano plane [2].

MSC2000: 05B07, 05B40.

Keywords: design over finite field, automorphisms, q-analsogs of designs.