Decompositions of Complete Graphs into Circulants

Mariusz Meszka
AGH University of Science and Technology, Kraków, Poland
meszka@agh.edu.pl
(joint work with Roman Nedela, Alexander Rosa, Martin Škoviera)

For a positive integer n and a set $S \subseteq\left\{1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor\right\}$, a circulant $C(n ; S)$ of order n and connection set S is a graph $G=(V, E)$ such that $V=\mathbb{Z}_{n}$ and $E=\{\{u, v\}: \delta(u, v) \in S\}$ where $\delta(u, v)=\min \{ \pm|u-v|(\bmod n)\}$. Circulants are Cayley graphs of the cyclic group, and are recognized as an important class of vertex-transitive graphs.

Let $C(n ; S)$ be a fixed circulant. The main problem is to determine the spectrum for values of v such that the complete graph K_{v} admits an edge-disjoint decomposition into subgraphs each of which is isomorphic to $C(n ; S)$. A complete solution in not to be expected since some instances correspond to famous existence problems (for instance, the existence of BIBD's with $\lambda=1$). On the other hand, the well-known result of Richard Wilson guarantees the asymptotic existence of a decomposition.

Results with respect to circulants of small degree will be discussed. In particular, the existence spectrum for Moebius ladders M_{4}, M_{5}, M_{6} and the prism Pr_{5} will be presented.

MSC2000: 05C70.

Keywords: graph decomposition; circulant.

