Near Butson-Hadamard Matrices with Small off-diagonal Entries

Sibel Kurt
Hacettepe University, Department of Mathematics, Beytepe, Ankara, Turkey
sibelk09@hacettepe.edu.tr
(joint work with Oğuz Yayla)

For an integer $m \geq 2$ let ξ_{m} denote a primitive complex m-th root of unity. We call a v-periodic sequence $\underline{a}=\left(a_{0}, a_{1}, \ldots, a_{v-1}, \ldots\right)$ an m-ary sequence if $a_{0}, a_{1}, \ldots, a_{v-1} \in \mathcal{E}_{m}$, (where $\mathcal{E}_{m}=\left\{1, \xi_{m}, \xi_{m}^{2}, \ldots, \xi_{m}^{m-1}\right\}$), and an almost m-ary sequence if $a_{0}=0$ and $a_{1}, \ldots, a_{v-1} \in$ \mathcal{E}_{m}. For $1 \leq t \leq v-1$ the autocorrelation function $C_{\underline{a}}(t)$ is defined by $C_{\underline{a}}(t)=\sum_{i=0}^{v-1} a_{i} \overline{a_{i+t}}$ where \bar{a} is the complex conjugate of a. An m-ary or almost m-ary sequence \underline{a} of period v is called a perfect sequence (PS) if $C_{\underline{a}}(t)=0$ for all $1 \leq t \leq v-1$. Similarly, an almost m-ary sequence \underline{a} of period v is called a nearly perfect sequence (NPS) of type $\gamma \in\{-1,+1\}$ if $C_{\underline{a}}(t)=\gamma$ for all $1 \leq t \leq v-1$. This definition is extended to any $\gamma \in \mathbb{R} \cap \mathbb{Z}\left[\xi_{m}\right]$ with small absolute value with respect to n. Such sequences can be used in applications requiring a sequence with good correlation properties. A NPS can be identified with a circulant near Butson-Hadamard matrix. A square matrix H of order v with entries in \mathcal{E}_{m} is called a near Butson-Hadamard matrix $\mathrm{BH}_{\gamma}(v, m)$ of type γ if $H \bar{H}^{T}=(v-\gamma) I+\gamma J$ for a $\gamma \in \mathbb{R} \cap \mathbb{Z}\left[\xi_{m}\right]$. Very recently, new properties of m-ary $\mathrm{BH}_{\gamma}(v, m)$ matrices for $\gamma \in \mathbb{Z}$ are studied in Winterhof-Yayla-Ziegler (2014). In this work, we study m-ary BH_{γ} matrices for $\gamma \notin \mathbb{Z}$, and look for new BH_{γ} examples and their existence conditions. In addition, we use the methods in Winterhof et al to prove some nonexistence results for certain BH_{γ} matrices. We know that $\gamma \in \mathbb{R} \cap \mathbb{Z}\left[\xi_{m}\right]$. In this study, we consider the case $\mathbb{Z}\left[\xi_{m}\right] \backslash \mathbb{Z}$. Our motivation is to obtain BH_{γ} matrices having $|\gamma|$ as small as possible. For instance there exist $\mathrm{BH}_{\gamma}(3,7), \mathrm{BH}_{\gamma}(4,7), \mathrm{BH}_{\gamma}(5,5)$, $\mathrm{BH}_{\gamma}(6,5), \mathrm{BH}_{\gamma}(7,5), \mathrm{BH}_{\gamma}(7,7), \mathrm{BH}_{\gamma}(8,5), \mathrm{BH}_{\gamma}(9,5)$ for certain values of γ such that $\gamma \notin \mathbb{Z}$. In particular, $\mathrm{BH}_{\gamma}(5,5)$ exists for $\gamma \in\left\{-\xi_{5}^{3}-\xi_{5}^{2}+2,0,5, \xi_{5}^{3}+\xi_{5}^{2}+3\right\}$ with $|\gamma| \in\{1.38,0,5,3.61\}$, respectively. The sequence $\underline{a}=\left(1,1,-\xi_{5}^{2}, 1,1\right)$ has $\gamma=-\xi_{5}^{3}-\xi_{5}^{2}+2$ with $|\gamma|=1.38$. We also consider $\mathrm{BH}_{\gamma}(8,5)$, it exists for $\gamma \in\left\{-\xi_{5}^{3}-\xi_{5}^{2}+5,-\xi_{5}^{3}-\xi_{5}^{2}, 8, \xi_{5}^{3}+\xi_{5}^{2}+1, \xi_{5}^{3}+\xi_{5}^{2}+6\right\}$ with $|\gamma| \in\{6.61,1.61,8,0.61,4.38\}$, respectively. The sequence $\underline{a}=\left(1,1, \xi_{5}^{2}, \xi_{5}^{3}, 1, \xi_{5}^{3}, \xi_{5}, 1\right)$ has $\gamma=-\xi_{5}^{3}-\xi_{5}^{2}+2$ with $|\gamma|=0.61$. We obtained these examples by exhaustive computer
search by MAGMA. Moreover we present a method for excluding existence of BH_{γ} for certain dimensions in case $\mathbb{Z}\left[\xi_{m}\right]$ is not principal ideal domain that is an extension of a method presented in Winterhof et al.

The authors are supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) under Grant No. 116R001.

MSC2000: 94A55, 05B20.

Keywords: near Butson-Hadamard matrices, nearly perfect sequences.

