Near Butson-Hadamard Matrices with Small off-diagonal Entries

Sibel Kurt

Hacettepe University, Department of Mathematics, Beytepe, Ankara, Turkey sibelk09@hacettepe.edu.tr

(joint work with Oğuz Yayla)

For an integer $m \geq 2$ let ξ_m denote a primitive complex *m*-th root of unity. We call a *v*-periodic sequence $\underline{a} = (a_0, a_1, \dots, a_{v-1}, \dots)$ an *m*-ary sequence if $a_0, a_1, \dots, a_{v-1} \in \mathcal{E}_m$, (where $\mathcal{E}_m = \{1, \xi_m, \xi_m^2, ..., \xi_m^{m-1}\}$), and an almost *m*-ary sequence if $a_0 = 0$ and $a_1, ..., a_{v-1} \in \mathbb{C}$ \mathcal{E}_m . For $1 \leq t \leq v-1$ the autocorrelation function $C_{\underline{a}}(t)$ is defined by $C_{\underline{a}}(t) = \sum_{i=0}^{v-1} a_i \overline{a_{i+t}}$ where \overline{a} is the complex conjugate of a. An m-ary or almost m-ary sequence <u>a</u> of period v is called a perfect sequence (PS) if $C_{\underline{a}}(t) = 0$ for all $1 \leq t \leq v - 1$. Similarly, an almost *m*-ary sequence <u>a</u> of period v is called a nearly perfect sequence (NPS) of type $\gamma \in \{-1, +1\}$ if $C_{\underline{a}}(t) = \gamma$ for all $1 \leq t \leq v - 1$. This definition is extended to any $\gamma \in \mathbb{R} \cap \mathbb{Z}[\xi_m]$ with small absolute value with respect to n. Such sequences can be used in applications requiring a sequence with good correlation properties. A NPS can be identified with a circulant near Butson-Hadamard matrix. A square matrix H of order v with entries in \mathcal{E}_m is called a near Butson-Hadamard matrix $BH_{\gamma}(v,m)$ of type γ if $H\overline{H}^T = (v-\gamma)I + \gamma J$ for a $\gamma \in \mathbb{R} \cap \mathbb{Z}[\xi_m]$. Very recently, new properties of *m*-ary $BH_{\gamma}(v, m)$ matrices for $\gamma \in \mathbb{Z}$ are studied in Winterhof-Yayla-Ziegler (2014). In this work, we study *m*-ary BH_{γ} matrices for $\gamma \notin \mathbb{Z}$, and look for new BH_{γ} examples and their existence conditions. In addition, we use the methods in Winterhof et al to prove some nonexistence results for certain BH_{γ} matrices. We know that $\gamma \in \mathbb{R} \cap \mathbb{Z}[\xi_m]$. In this study, we consider the case $\mathbb{Z}[\xi_m] \setminus \mathbb{Z}$. Our motivation is to obtain BH_{γ} matrices having $|\gamma|$ as small as possible. For instance there exist BH_{γ}(3,7), BH_{γ}(4,7), BH_{γ}(5,5), $BH_{\gamma}(6,5), BH_{\gamma}(7,5), BH_{\gamma}(7,7), BH_{\gamma}(8,5), BH_{\gamma}(9,5)$ for certain values of γ such that $\gamma \notin \mathbb{Z}$. $\text{In particular, BH}_{\gamma}(5,5) \text{ exists for } \gamma \in \{-\xi_5^3 - \xi_5^2 + 2, 0, 5, \xi_5^3 + \xi_5^2 + 3\} \text{ with } |\gamma| \in \{1.38, 0, 5, 3.61\},$ respectively. The sequence $\underline{a} = (1, 1, -\xi_5^2, 1, 1)$ has $\gamma = -\xi_5^3 - \xi_5^2 + 2$ with $|\gamma| = 1.38$. We also consider BH_{γ}(8,5), it exists for $\gamma \in \{-\xi_5^3 - \xi_5^2 + 5, -\xi_5^3 - \xi_5^2, 8, \xi_5^3 + \xi_5^2 + 1, \xi_5^3 + \xi_5^2 + 6\}$ with $|\gamma| \in \{6.61, 1.61, 8, 0.61, 4.38\}$, respectively. The sequence $\underline{a} = (1, 1, \xi_5^2, \xi_5^3, 1, \xi_5^3, \xi_5, 1)$ has $\gamma = -\xi_5^3 - \xi_5^2 + 2$ with $|\gamma| = 0.61$. We obtained these examples by exhaustive computer

search by MAGMA. Moreover we present a method for excluding existence of BH_{γ} for certain dimensions in case $\mathbb{Z}[\xi_m]$ is not principal ideal domain that is an extension of a method presented in Winterhof et al.

The authors are supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) under Grant No. 116R001.

MSC2000: 94A55, 05B20.

Keywords: near Butson-Hadamard matrices, nearly perfect sequences.