Strong Monochromatic Connectivity of Digraphs

Mucuy-kak Guevara
National Autonomous University of México.
mucuy-kak.guevara@ciencias.unam.mx
(joint work with Diego González-Moreno and Juan José Montellano)

An interesting generalization of the concept of connectivity in graphs, due to Chartrand, Johns, McKeon and Zhang [2], is the rainbow connecting colorings. An edge-colored graph G is rainbow connected if there exists a path, with no two edges colored the same, between any two vertices of G. For more information on rainbow connectivity see the book of Li and Sun [3]. Caro and Yuster [1], as a naturally oposite question, introduced the concept of monochromatic-connecting coloring of a graph. An edge-coloring of a graph G is a monochromatic-connecting coloring if there exists a monochromatic path between any two vertices of G. The above definition can be naturally extended for digraphs. An arc-coloring of a digraph D is a strongly monochromatic-connecting coloring (SMC-coloring, for short) if for every pair u, v of vertices in D there exists an (u, v)-monochromatic path and a (v, u) monochromatic path. Since every strongly connected digraph has an SMC-coloring, a natural question is: which is the maximum number of colors that can have an SMC-coloring? The strong monochromatic connection number of a strong digraph D, denoted by $\operatorname{smc}(D)$, is defined as the maximum number of colors used in an SMC-coloring of D. In this talk we show that if D is a strongly connected digraph with size m, then $\operatorname{smc}(D)=m-\Omega(D)+1$, where $\Omega(D)$ is the minimum size of a spanning strongly connected subdigraph of D.

References

[1] Y. Caro, R. Yuster, Colorful monochromatic connectivity, Disc. Math., 311 (2011), 17861792.
[2] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs, Mathematica Bohemica, 133 (2008), 85-98.
[3] X. Li, Y. Sun, Rainbow Connections of Graphs, Springer, London, 2013.

MSC2000: 05C15, 05C20, 05C40.

Keywords: edge-coloring, monochromatic-connectivity, strong connectivity.

