Hamiltonicity/Non-Hamiltonicity of 2-Block-Intersection Graphs of Twofold Triple Systems

Aras Erzurumluoğlu Department of Mathematics and Statistics Memorial University of Newfoundland St. John's, NL, Canada A1C 5S7 aerzurumluog@mun.ca

A balanced incomplete block design (BIBD (v, k, λ)) (V, \mathcal{B}) is a combinatorial design in which (i) |V| = v, (ii) for each block $B \in \mathcal{B}$, |B| = k, and (iii) each 2-subset of V occurs in precisely λ blocks of \mathcal{B} . A BIBD(v, 3, 2) is a twofold triple system (TTS(v)).

Given a combinatorial design \mathcal{D} with block set \mathcal{B} , the block-intersection graph (BIG) of \mathcal{D} is the graph having \mathcal{B} as its vertex set, and in which two vertices $B_1 \in \mathcal{B}$ and $B_2 \in \mathcal{B}$ are adjacent if and only if $|B_1 \cap B_2| \neq 0$. Similarly, the *i*-block-intersection graph (*i*-BIG) of \mathcal{D} is the graph having \mathcal{B} as its vertex set, and in which two vertices $B_1 \in \mathcal{B}$ and $B_2 \in \mathcal{B}$ are adjacent if and only if $|B_1 \cap B_2| = i$.

I will present some recent results (from our joint work with David Pike) on the Hamiltonicity/non-Hamiltonicity of 2-BIGs of twofold triple systems.