On Mutually Nearly Orthogonal Latin Squares

Fatih Demirkale
Yıldız Technical University
fatihd@yildiz.edu.tr

Two Latin squares $L=[l(i, j)]$ and $M=[m(i, j)]$, of even order n with entries $\{0,1,2, \ldots, n-$ $1\}$, are said to be nearly orthogonal if the superimposition of L on M yields an $n \times n$ array $A=[(l(i, j), m(i, j))]$ in which each ordered pair $(x, y), 0 \leq x, y \leq n-1$ and $x \neq y$, occurs at least once and the ordered pair ($x, x+n / 2$) occurs exactly twice.

In this talk, I will discuss an upper bound for the maximum μ for which a set of μ cyclic mutually orthogonal Latin squares (MNOLS) of order n exists and give the values of μ for $n \leq 16$. Also, I will present direct constructions for the existence of general families of 3 cyclic MNOLS of some orders and settle the spectrum question for sets of 3 MNOLS of even order, for all but the order 146 .

MSC2000: 05B15.

Keywords: Latin squares, orthogonal Latin squares, nearly orthogonal Latin squares, quasi-difference sets.

