Rigid Moieties of Relational Homogeneous Structures

Doğan Bilge

dobilge@ku.edu.tr

Abstract

Given a countable set X, a *moiety* of X is a subset which is countable and cocountable. A *rigid* embedding of a structure M into a structure N is an embedding where each automorphism of M extends uniquely to an automorphism of N.

Definition 0.1. Let \mathcal{K} be a free amalgamation class in a finite relational language \mathcal{L} and let **K** be its Fraïssé limit. Assume that for each $R_i \in \mathcal{L}$ and each $x_1, x_2, ..., x_{l_i} \in \mathbf{K}$, if $R_i(x_1, x_2, ..., x_{l_i})$, then $x_1 = x_2 = ... = x_{l_i}$. Then \mathcal{K} is called *totally disconnected*.

Theorem 0.2. Let \mathcal{K} be a not totally disconnected free amalgamation class in a finite relational language \mathcal{L} and assume that all the one-point sets in \mathcal{K} are isomorphic. Then every countably infinite \mathcal{L} -structure \mathcal{K} , whose age lies in \mathcal{K} , can be embedded as a rigid moiety into the Fraïssé limit of \mathcal{K} . Moreover, there are 2^{ω} many such embeddings which are not conjugate in Aut(\mathbf{K}).

This theorem almost fully classifies the existence of rigid moieties among free amalgamation classes.

Keywords: Rigid Embedding, Moiety, Free Amalgamation, Fraïssé limit.