Orientation of Graphs with Constraints on the Out-degrees

Saieed Akbari
Sharif University of Technology
s_akbari@sharif.edu
(joint work with M. Dalirrooyfard, K. Ehsani, K. Ozeki, R. Sherkati)

Let G be a graph and $F: V(G) \rightarrow 2^{\mathbb{N}}$ be a function. The graph G is said to be F-avoiding if there exists an orientation O of G such that $d_{O}^{+}(v) \notin F(v)$ for every $v \in V(G)$. In this talk using Combinatorial Nullstellensatz Theorem we show that if G is bipartite and it admits an orientation D such that $d_{D}^{+}(v) \geq|F(v)|$ for every vertex v, then G is F-avoiding. As a corollary, we find that if G is bipartite and $|F(v)| \leq \frac{d_{G}(v)}{2}$ for every $v \in V(G)$, then G is F-avoiding. The bound $|F(v)| \leq \frac{d_{G}(v)}{2}$ is best possible. For every graph G, we conjecture that if $|F(v)| \leq \frac{1}{2}\left(d_{G}(v)^{2}-1\right)$ for every $v \in V(G)$, then G is F-avoiding.

Let k be an odd integer $(k \geq 3)$. A mapping $\beta: V(G) \rightarrow \mathbb{Z}_{k}$ is called a \mathbb{Z}_{k}-boundary of G if $\sum_{v \in V(G)} \beta(v) \equiv 0(\bmod k)$. Let β be a \mathbb{Z}_{k}-boundary of G. An orientation D of G is called a β-orientation if, for every vertex $v \in V(G)$, $d_{D}^{+}(v)-d_{D}^{-}(v) \equiv \beta(v)(\bmod k)$. Using some results on β-orientation of graphs, we show that the conjecture is almost true for the complete graphs.

MSC2000: $05 \mathrm{C} 07,05 \mathrm{C} 20,05 \mathrm{C} 25,05 \mathrm{C} 31$.
Keywords: Orientation, F-avoiding, Strongly group connectivity, Jaeger's Conjecture.

