Orientation of Graphs with Constraints on the Out-degrees

Saieed Akbari Sharif University of Technology s_akbari@sharif.edu

(joint work with M. Dalirrooyfard, K. Ehsani, K. Ozeki, R. Sherkati)

Let G be a graph and $F: V(G) \to 2^{\mathbb{N}}$ be a function. The graph G is said to be F-avoiding if there exists an orientation O of G such that $d_O^+(v) \notin F(v)$ for every $v \in V(G)$. In this talk using Combinatorial Nullstellensatz Theorem we show that if G is bipartite and it admits an orientation D such that $d_D^+(v) \ge |F(v)|$ for every vertex v, then G is F-avoiding. As a corollary, we find that if G is bipartite and $|F(v)| \le \frac{d_G(v)}{2}$ for every $v \in V(G)$, then G is F-avoiding. The bound $|F(v)| \le \frac{d_G(v)}{2}$ is best possible. For every graph G, we conjecture that if $|F(v)| \le \frac{1}{2}(d_G(v) - 1)$ for every $v \in V(G)$, then G is F-avoiding.

Let k be an odd integer $(k \geq 3)$. A mapping $\beta : V(G) \to \mathbb{Z}_k$ is called a \mathbb{Z}_k -boundary of G if $\sum_{v \in V(G)} \beta(v) \equiv 0 \pmod{k}$. Let β be a \mathbb{Z}_k -boundary of G. An orientation D of G is called a β -orientation if, for every vertex $v \in V(G)$, $d_D^+(v) - d_D^-(v) \equiv \beta(v) \pmod{k}$. Using some results on β -orientation of graphs, we show that the conjecture is almost true for the complete graphs.

MSC2000: 05C07, 05C20, 05C25, 05C31.

Keywords: Orientation, *F*-avoiding, Strongly group connectivity, Jaeger's Conjecture.