Hamiltonicity and Restricted Block-intersection Graphs of $t\text{-}{\rm designs}$

Matt Walsh Indiana-Purdue University Fort Wayne walshm@ipfw.edu

(joint work with David Pike and Chip Vandell)

Given a combinatorial design \mathcal{D} with block set \mathcal{B} , its traditional block-intersection graph $G_{\mathcal{D}}$ is the graph having vertex set \mathcal{B} such that two vertices b_1 and b_2 are adjacent if and only if b_1 and b_2 have non-empty intersection. In this paper we consider the S-block-intersection graph, in which two vertices b_1 and b_2 are adjacent if and only if $|b_1 \cap b_2| \in S$. As our main result we prove that $\{1, 2, \ldots, t-1\}$ -block-intersection graphs of t-designs with parameters $(v, t + 1, \lambda)$ are Hamiltonian whenever $t \geq 3$ and $v \geq t + 3$, except possibly when $(v, t) \in \{(8, 5), (7, 4), (7, 3), (6, 3)\}$.

MSC2000: 05B05, 05C45, 05C62.

Keywords: block designs, block-intersection graphs, Hamilton cycles.