An Intersection Theorem with Small Unions
 Lale Özkahya
 University of Illinois at Urbana-Champaign
 ozkahya@uiuc.edu
 (joint work with Zoltán Füredi)

Suppose that \mathcal{F} is a family of k subsets of an n-set, $\mathcal{F} \subseteq\binom{[n]}{k}, n \geq k \geq 3$, where $[n]=\{1,2, \ldots, n\}$. A d-cluster is a set of d members of \mathcal{F} with an empty intersection and with union of size at most $2 k$. We prove a conjecture of Mubayi for sufficiently large n. (D. Mubayi, Erdös-Ko-Rado for three sets, J. Combin. Theory Ser. A, 113 (3) (2006) 547-550.) It is shown that for $2 \leq d \leq k$ and $n>n_{0}(k)$ if the k-uniform set system \mathcal{F} contains no d-cluster, then $|\mathcal{F}| \leq\binom{ n-1}{k-1}$. With a different method we also settle the case $d=k+1$ for all n.

MSC2000: 05B07, 05B40.
Keywords: Set systems, Intersecting families.

