Decomposing Complete Graphs into Sun Graphs of 3-cycle

Chin-Mei Fu
Tamkang University
cmfu@math.tku.edu.tw
(joint work with Nan-Hua Jhuang, Wei-Hung Lee, and Yuan-Lung Lin)

Let G be a graph with at least three vertices and suppose $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Add n new vertices $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ to G together with edges $\left\{v_{i}, w_{i}\right\}$, for $1 \leq i \leq n$. The resulting graph on $2 n$ vertices is called a sun graph of G, denoted by $S(G)$. A sun graph of 3 -cycle, $S\left(C_{3}\right)$, is a graph with six vertices $v_{1}, v_{2}, \ldots, v_{6}$ and edges $\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{3}, v_{1}\right\},\left\{v_{1}, v_{4}\right\},\left\{v_{2}, v_{5}\right\},\left\{v_{3}, v_{6}\right\}$. The decomposition of a graph G into graphs $H_{1}, H_{2}, \ldots, H_{m}$ if $H_{1}, H_{2}, \ldots, H_{m}$ are edge-disjoint subgraphs of G and the union of edge sets of these subgraphs is the edge set of G .

In this paper, we obtain the necessary and sufficient condition for the decomposition of K_{n} into sun graphs of 3 -cycle. At the same time we have decomposed $K_{p, p, r}$ into sun graphs of 3 -cycle.

> MSC2000: 05B05, 05C70.

Keywords: Decomposition, Sun graph of 3-cycle.

