On the Existence of k-homogeneous Latin Bitrades

Ebadollah S. Mahmoodian
Sharif University of Technology and IPM
emahmood@sharif.edu
(joint work with Behrooz Bagheri Gh.)

Let T be a partial Latin square and L a Latin square such that $T \subseteq L$. Then T is called a Latin trade, if there exists a partial Latin square T^{*} such that $T^{*} \cap T=\emptyset$ and $(L \backslash T) \cup T^{*}$ is a Latin square. We call T^{*} a disjoint mate of T and the pair $\left(T, T^{*}\right)$ is called a Latin bitrade. A Latin bitrade which is obtained from another one by deleting its empty rows and empty columns, is called a k-homogeneous Latin bitrade, if in each row and each column it contains exactly k elements, and each element appears exactly k times. The number of elements in a Latin trade is referred to as its volume.

Following the earlier work on k-homogeneous Latin bitrades by Cavenagh, Donovan, and Drápal (2003 and 2004) Bean, Bidkhori, Khosravi, and E. S. Mahmoodian (2005) we prove the following,

Theorem. All k-homogeneous Latin bitrades of volume $k m$ exist

- for each odd number k and $m \geq k$, and
- for each even number k and $m \geq \min \left\{(k+p), \frac{3 k}{2}\right\}$, where p is any odd prime number which divides k.

MSC2000: 05B15.
Keywords: Latin squares, Latin bitrades, k-homogeneous.

