Maximum Sets in a Finite Projective Space
 J.W.P. Hirschfeld
 University of Sussex
 jwph@sussex.ac.uk

In a projective plane $\mathrm{PG}(2, q)$ over the field \mathbf{F}_{q} of q elements, a $(k ; n)$-arc is a set of k points in the plane with at most n on any line and some line containing exactly n points of the set. These have been most studied for the case $n=2$ and they correspond to an MDS code of dimension 3. The largest value of k for a $(k ; n)$-arc is denoted $m_{n}(2, q)$.

More generally, a $(k ; r, s ; d, q)$-set K is defined to be a set satisfying the following properties:
(a) the set K consists of k points of $\mathrm{PG}(d, q)$ and is not contained in a proper subspace;
(b) some subspace Π_{s} contains r points of K, but no Π_{s} contains $r+1$ points of K;
(c) there is a subspace Π_{s+1} containing $r+2$ points of K.

So a $(k ; n)$-arc is a $(k ; n, 1 ; 2, q)$-set.
A $(k ; r, s ; d, q)$-set is complete if it is maximal with respect to inclusion; that is, it is not contained in a $(k+1 ; r, s ; d, q)$-set.

The main problems are the following.
(I) Find $m(r, s ; d, q)$, the maximum value of k.
(II) Classify these sets of maximum size.
(III) Find $m^{\prime}(r, s ; d, q)$, the size k of the second largest complete $(k ; r, s ; d, q)$ set.

The progress of these problems in the last 25 years is considered, concentrating mainly on the two cases:
(i) $(k ; n, 1 ; 2, q)$-sets;
(ii) $(k ; d, d-1 ; d, q)$-sets.

