Potential Field Methods

Acknowledgement: Parts of these course notes are based on notes from courses given by Jean-Claude Latombe at Stanford University (and Chapter 7 in his text Robot Motion Planning, Kluwer, 1991), O. Burçhan Bayazıt at Washington University in St. Louis. Seth Hutchinson at the University of Illinois at Urbana-Champaign, and Leo Joskowicz at Hebrew University.

Potential Field Methods

Basic Idea:

- robot is represented by a point in C-space
- treat robot like particle under the influence of an artificial potential field U
- \mathbf{U} is constructed to reflect (locally) the structure of the free C-space (hence called 'local' methods)
- originally proposed by Khatib for on-line collision avoidance for a robot with proximity sensors

Motion planning is an iterative process

1. compute the artificial force $\vec{F}(\mathbf{q})=-\nabla \mathbf{U}(\mathbf{q})$ at current configuration
2. take a small step in the direction indicated by this force
3. repeat until reach goal configuration (or get stuck)

Note:

- major problem: local minima (most potential field methods are incomplete)
- advantages: speed
- RPP, a randomized potential field method proposed by Barraquand and Latombe for path planning, can be applied to robots with many dof

The Potential Field (translation only)

Assumption: \mathcal{A} translates freely in $\mathcal{W}=\mathbb{R}^{2}$ or \mathbb{R}^{3} at fixed orientation (so $\mathcal{C}=\mathcal{W})$

The Potential Function: $\mathbf{U}: \mathcal{C}_{\text {free }} \longrightarrow \mathbb{R}^{1}$

- want robot to be attacted to goal and repelled from obstacles
- attractive potential $\mathbf{U}_{\text {att }}(\mathbf{q})$ associated with $\mathbf{q}_{\text {goal }}$
- repulsive potential $\mathbf{U}_{\text {rep }}(\mathbf{q})$ associated with $\mathcal{C B}$
$-\mathbf{U}(\mathbf{q})=\mathbf{U}_{a t t}(\mathbf{q})+\mathbf{U}_{r e p}(\mathbf{q})$
- $\mathbf{U}(\mathbf{q})$ must be differentiable for every $\mathbf{q} \in \mathcal{C}_{\text {free }}$

The Field of Artificial Forces: $\vec{F}(\mathbf{q})=-\nabla \mathbf{U}(\mathbf{q})$

- $\nabla \mathbf{U}(\mathbf{q})$ denotes gradient of \mathbf{U} at \mathbf{q}, i.e., $\nabla \mathbf{U}(\mathbf{q})$ is a vector that 'points' in the direction of 'fastest change' of \mathbf{U} at configuration \mathbf{q}
- e.g., if $\mathcal{W}=\mathbb{R}^{2}$, then $\mathbf{q}=(x, y)$ and

$$
\nabla \mathbf{U}(\mathbf{q})=\left[\begin{array}{l}
\frac{\partial \mathbf{U}}{\partial x} \\
\frac{\partial \mathbf{U}}{\partial y}
\end{array}\right]
$$

- $|\nabla \mathbf{U}(\mathbf{q})|=\sqrt{\left(\frac{\partial \mathbf{U}}{\partial x}\right)^{2}+\left(\frac{\partial \mathbf{U}}{\partial y}\right)^{2}}$ is the magnitude of the rate of change
- $\vec{F}(\mathbf{q})=-\nabla \mathbf{U}_{a t t}(\mathbf{q})-\nabla \mathbf{U}_{r e p}(\mathbf{q})$

The Attractive Potential

Basic Idea: $\mathbf{U}_{\text {att }}(\mathbf{q})$ should increase as \mathbf{q} moves away from $\mathbf{q}_{\text {goal }}$ (like potential energy increases as you move away from earth's surface)

Naive Idea: $\mathbf{U}_{\text {att }}(\mathbf{q})$ is linear function of distance from \mathbf{q} to $\mathbf{q}_{\text {goal }}$

- $\mathbf{U}_{\text {att }}(\mathbf{q})$ does increase as move away from $\mathbf{q}_{\text {goal }}$
- but $-\nabla \mathbf{U}_{\text {att }}$ has constant magnitude so it doesn't help us get to the goal

Better Idea: $\mathbf{U}_{\text {att }}(\mathbf{q})$ is a 'parabolic well'

- $\mathbf{U}_{\text {att }}(\mathbf{q})=\frac{1}{2} \xi \rho_{\text {goal }}^{2}(\mathbf{q})$, where
$-\rho_{\text {goal }}(\mathbf{q})=\left\|\mathbf{q}-\mathbf{q}_{\text {goal }}\right\|$, i.e., Euclidean distance
$-\xi$ is some positive constant scaling factor
- unique minimum at $\mathbf{q}_{\text {goal }}$, i.e., $\mathbf{U}_{\text {att }}\left(\mathbf{q}_{\text {goal }}\right)=0$
- $\mathbf{U}_{\text {att }}(\mathbf{q})$ differentiable for all \mathbf{q}

$$
\begin{aligned}
\vec{F}_{\text {att }}(\mathbf{q})=-\nabla \mathbf{U}_{\text {att }}(\mathbf{q}) & =-\nabla \frac{1}{2} \xi \rho_{\text {goal }}^{2}(\mathbf{q}) \\
& =-\frac{1}{2} \xi \nabla \rho_{\text {goal }}^{2}(\mathbf{q}) \\
& =-\frac{1}{2} \xi\left(2 \rho_{\text {goal }}(\mathbf{q})\right) \nabla \rho_{\text {goal }}(\mathbf{q})
\end{aligned}
$$

The Gradient $\nabla \rho_{\text {goal }}(\mathbf{q})$

Recall: $\rho_{\text {goal }}(\mathbf{q})=\left\|\mathbf{q}-\mathbf{q}_{\text {goal }}\right\|=\left(\sum_{i}\left(x_{i}-x_{g_{i}}\right)^{2}\right)^{1 / 2}$, where $\mathbf{q}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{q}_{\text {goal }}=\left(x_{g_{1}}, \ldots, x_{g_{n}}\right)$

$$
\begin{aligned}
\nabla \rho_{\text {goal }}(\mathbf{q}) & =\nabla\left(\sum_{i}\left(x_{i}-x_{g_{i}}\right)^{2}\right)^{1 / 2} \\
& =\frac{1}{2}\left(\sum_{i}\left(x_{i}-x_{g_{i}}\right)^{2}\right)^{-1 / 2} \nabla\left(\sum_{i}\left(x_{i}-x_{g_{i}}\right)^{2}\right) \\
& =\frac{1}{2}\left(\sum_{i}\left(x_{i}-x_{g_{i}}\right)^{2}\right)^{-1 / 2}\left(2\left(x_{1}-x_{g_{1}}\right), \ldots, 2\left(x_{n}-x_{g_{n}}\right)\right) \\
& =\frac{\left(x_{1}, \ldots, x_{n}\right)-\left(x_{g_{1}}, \ldots, x_{g_{n}}\right)}{\left(\sum_{i}\left(x_{i}-x_{g_{i}}\right)^{2}\right)^{1 / 2}} \\
& =\frac{\mathbf{q}-\mathbf{q}_{\text {goal }}}{\left\|\mathbf{q}-\mathbf{q}_{\text {goal }}\right\|}=\frac{\mathbf{q}-\mathbf{q}_{\text {goal }}}{\rho_{\text {goal }}(\mathbf{q})}
\end{aligned}
$$

So, $-\nabla \rho_{\text {goal }}(\mathbf{q})$ is a unit vector directed toward $\mathbf{q}_{\text {goal }}$ from \mathbf{q}

Thus, since $-\nabla \mathbf{U}_{\text {att }}(\mathbf{q})=-\frac{1}{2} \xi\left(2 \rho_{\text {goal }}(\mathbf{q})\right) \nabla \rho_{\text {goal }}(\mathbf{q})$, we get:

$$
\vec{F}_{a t t}(\mathbf{q})=-\nabla \mathbf{U}_{a t t}(\mathbf{q})=-\xi\left(\mathbf{q}-\mathbf{q}_{g o a l}\right)
$$

- $\vec{F}_{\text {att }}(\mathbf{q})$ is a vector directed toward $\mathbf{q}_{\text {goal }}$ with magnitude linearly related to the distance from \mathbf{q} to $\mathbf{q}_{\text {goal }}$
- $\vec{F}_{a t t}(\mathbf{q})$ converges linearly to zero as \mathbf{q} approaches $\mathbf{q}_{\text {goal }}$ - good for stability
- $\vec{F}_{\text {att }}(\mathbf{q})$ grows without bound as \mathbf{q} moves away from $\mathbf{q}_{\text {goal }}$ - not so good

Conic Well Attractive Potential

Idea: Use a 'conic well' to keep $\vec{F}_{\text {att }}(\mathbf{q})$ bounded

- $\mathbf{U}_{a t t}(\mathbf{q})=\xi \rho_{g o a l}(\mathbf{q})$
- $\vec{F}_{\text {att }}(\mathbf{q})=-\nabla \mathbf{U}_{\text {att }}(\mathbf{q})=-\xi \frac{\left(\mathbf{q}-\mathbf{q}_{\text {goal }}\right)}{\left\|\mathbf{q}-\mathbf{q}_{\text {goal }}\right\|}$
- $\vec{F}_{\text {att }}(\mathbf{q})$ is a unit vector (constant magnitude) directed towards $\mathbf{q}_{\text {goal }}$ everywhere except $\mathbf{q}=\mathbf{q}_{\text {goal }}$
- $\mathbf{U}_{\text {att }}$ is singular at the goal - not stable (might cause oscillations)

Better (?) Idea: A hybrid method with parabolic and conic wells

$$
\mathbf{U}_{\text {att }}(\mathbf{q})= \begin{cases}\frac{1}{2} \xi \rho_{\text {goal }}^{2}(\mathbf{q}) & \text { if } \rho_{\text {goal }}(\mathbf{q}) \leq d \\ d \xi \rho_{\text {goal }}(\mathbf{q}) & \text { if } \rho_{\text {gool }}(\mathbf{q})>d\end{cases}
$$

and

$$
\vec{F}_{\text {att }}(\mathbf{q})= \begin{cases}-\xi\left(\mathbf{q}-\mathbf{q}_{\text {goal }}\right) & \text { if }\left\|\mathbf{q}-\mathbf{q}_{\text {goal }}\right\| \leq d \\ -d \xi \frac{\left(\mathbf{q}-\mathbf{q}_{\text {goal }}\right)}{\left\|\mathbf{q}-\mathbf{g}_{\text {goal }}\right\|} & \text { if }\left\|\mathbf{q}-\mathbf{q}_{\text {goal }}\right\|>d\end{cases}
$$

The Repulsive Potential

Basic Idea: \mathcal{A} should be repelled from obstacles

- never want to let \mathcal{A} 'hit' an obstacle
- if \mathcal{A} is far from obstacle, don't want obstacle to affect \mathcal{A} 's motion
$\underline{\text { One Choice for } \mathbf{U}_{\text {rep }}}$:

$$
\mathbf{U}_{r e p}(\mathbf{q})= \begin{cases}\frac{1}{2} \eta\left(\frac{1}{\rho(\mathbf{q})}-\frac{1}{\rho_{0}}\right) & \text { if } \rho(\mathbf{q}) \leq \rho_{0} \\ 0 & \text { if } \rho(\mathbf{q})>\rho_{0}\end{cases}
$$

where

- $\rho(\mathbf{q})$ is minimum distance from $\mathcal{C B}$ to \mathbf{q}, i.e., $\rho(\mathbf{q})=\min _{\mathbf{q}^{\prime} \in \mathcal{C B}}\left\|\mathbf{q}-\mathbf{q}^{\prime}\right\|$
- η is a positive scaling factor
- ρ_{0} is a positive constant - distance of influence

So, as \mathbf{q} approaches $\mathcal{C B}, \mathbf{U}_{\text {rep }}(\mathbf{q})$ approaches ∞

The Repulsive Force $\vec{F}_{r e p}(\mathbf{q})=-\nabla \mathbf{U}_{r e p}(\mathbf{q})$ for convex $\mathcal{C B}$

(unrealistic) Assumption: $\mathcal{C B}$ is a single convex region

$$
\begin{aligned}
\vec{F}_{r e p}(\mathbf{q}) & =-\nabla \mathbf{U}_{r e p}(\mathbf{q}) \\
& =-\nabla\left(\frac{1}{2} \eta\left(\frac{1}{\rho(\mathbf{q})}-\frac{1}{\rho_{0}}\right)^{2}\right) \\
& =-\frac{1}{2} \eta \nabla\left(\frac{1}{\rho(\mathbf{q})}-\frac{1}{\rho_{0}}\right)^{2} \\
& =-\eta\left(\frac{1}{\rho(\mathbf{q})}-\frac{1}{\rho_{0}}\right) \nabla\left(\frac{1}{\rho(\mathbf{q})}-\frac{1}{\rho_{0}}\right) \\
& =-\eta\left(\frac{1}{\rho(\mathbf{q})}-\frac{1}{\rho_{0}}\right)(-1)\left(\frac{1}{\rho^{2}(\mathbf{q})}\right) \nabla \rho(\mathbf{q}) \\
& =\eta\left(\frac{1}{\rho(\mathbf{q})}-\frac{1}{\rho_{0}}\right)\left(\frac{1}{\rho^{2}(\mathbf{q})}\right) \nabla \rho(\mathbf{q})
\end{aligned}
$$

Let \mathbf{q}_{c} be unique configuration in $\mathcal{C B}$ closest to \mathbf{q}, i.e., $\rho(\mathbf{q})=\left\|\mathbf{q}-\mathbf{q}_{c}\right\|$
Then, $\nabla \rho(\mathbf{q})$ is unit vector directed away from $\mathcal{C B}$ along the line passing through \mathbf{q}_{c} and \mathbf{q}

$$
\nabla \rho(\mathbf{q})=\frac{\mathbf{q}-\mathbf{q}_{c}}{\left\|\mathbf{q}-\mathbf{q}_{c}\right\|}
$$

SO

$$
\vec{F}_{r e p}(\mathbf{q})=\eta\left(\frac{1}{\rho(\mathbf{q})}-\frac{1}{\rho_{0}}\right)\left(\frac{1}{\rho^{2}(\mathbf{q})}\right) \frac{\mathbf{q}-\mathbf{q}_{c}}{\left\|\mathbf{q}-\mathbf{q}_{c}\right\|}
$$

The Repulsive Force for non-convex $\mathcal{C B}$

If $\mathcal{C B}$ is not convex, $\rho(\mathbf{q})$ is differentiable everywhere except for at configurations \mathbf{q} which have more than one closest point \mathbf{q}_{c} in $\mathcal{C B}$

In general, the set of closest points \mathbf{q}_{c} to \mathbf{q} is n-1-dimensional (where n is the dimension of \mathcal{C})

Note: $\vec{F}_{r e p}(\mathbf{q})$ exists on both sides of this line, but points in different directions (towards line) and could result in paths that oscillate

Usual Approach: Break $\mathcal{C B}$ (or \mathcal{B}) into convex pieces

- associate repulsive field with each convex piece
- final repulsive field is the sum
- potential trouble that several small $\mathcal{C B}_{i}$ may combine to generate a repulsive force greater than would be produced by a single larger obstacle - can weight fields according to size of $\mathcal{C B}_{i}$

Notes on Repulsive Fields

on designing $\mathbf{U}_{\text {rep }}$

- can select different η and ρ_{0} for each obstacle region - ρ_{0} small for $\mathcal{C B}_{i}$ close to goal (or else repulsive force may keep us from ever reaching goal)
- if $\mathbf{U}_{\text {rep }}\left(\mathbf{q}_{\text {goal }}\right) \neq 0$, then global minimum of $\mathbf{U}(\mathbf{q})$ is generally not at $\mathbf{q}_{\text {goal }}$
on computing $\mathbf{U}_{\text {rep }}$
- pretty easy if $\mathcal{C B}$ is polygonal or polyhedral
- really hard for arbitrary shaped $\mathcal{C B}$
- can try to break $\mathcal{C B}$ into convex pieces (not necessary polyhedral) - then can use iterative, numerical methods to find closest boundary points

Gradient Descent Potential Guided Planning

Using a potential field (attractive and repulsive) for path planning...

GRADIENT DESCENT PLANNING

input: $\mathbf{q}_{\text {init }}, \mathbf{q}_{\text {goal }}, \mathbf{U}(\mathbf{q})=\mathbf{U}_{\text {att }}(\mathbf{q})+\mathbf{U}_{\text {rep }}(\mathbf{q})$, and $\vec{F}(\mathbf{q})=-\nabla \mathbf{U}(\mathbf{q})$
output: a path connecting $\mathbf{q}_{\text {init }}$ and $\mathbf{q}_{\text {goal }}$

1. let $\mathbf{q}_{0}=\mathbf{q}_{\text {init }}, i=0$
2. if $\mathbf{q}_{i} \neq \mathbf{q}_{\text {goal }}$
then $\mathbf{q}_{i+1}=\mathbf{q}_{i}+\delta_{i} \frac{\vec{F}(\mathbf{q})}{\|\vec{F}(\mathbf{q})\|} \quad$ \{take a step of size δ_{i} in direction $\left.\vec{F}(\mathbf{q})\right\}$ else stop
3. set $i=i+1$ and goto step 2

Notes/Difficulties/Issues:

- originally proposed and well-suited for on-line planning where obstacles are 'sensed' during motion execution [Khatib 86], [Koditschek 89]
- also called 'Steepest Descent' or 'Depth-First' Planning
- local minima are a major problem - recognizing and escaping ...
- heuristics for escaping [Donald 84, Donald 87]
- step size δ_{i}
- δ_{i} should be small enough so that no collision is possible when moving along straight-line segment $\mathbf{q}_{i}, \mathbf{q}_{i+1}$ in C-space, e.g., set δ_{i} smaller than minimum (current) distance to $\mathcal{C B}$
- δ_{i} shouldn't let us overshoot goal
- how to evaluate $\rho(\mathbf{q})$ and $\nabla \rho(\mathbf{q})$ which appear in the equations for $\vec{F}(\mathbf{q})$, i.e., in finding the closest point of $\mathcal{C B}$ to current configuration \mathbf{q}

