Example 1: Determine shear stress distribution in the following I beam, with a shear force of $V=25 \mathrm{kN}$ applied.

Parallel Axis Theorem to find global I

Step 1: Determine the sectional geometric properties

Neutral Axis Location: $\bar{S}=\frac{\sum s_{i} A_{i}}{\sum A_{i}}=\frac{95 \times 100 \times 10+50 \times 80 \times 10+5 \times 100 \times 10}{100 \times 10+80 \times 10+100 \times 10}=50 \mathrm{~mm}$
Parallel Axis Theorem: $I=\sum\left(I_{\text {ilocal }}+\bar{y}_{i}^{2} A_{i}\right)=\left(I_{1 \text { loc }}+\bar{y}_{1}^{2} A_{1}\right)+\left(I_{2 l o c}+\bar{y}_{2}^{2} A_{2}\right)+\left(I_{3 l o c}+\bar{y}_{3}^{2} A_{3}\right)$

$$
\begin{gathered}
I=\left(\frac{100 \times 10^{3}}{12}+(45)^{2} \times 100 \times 10\right)+\left(\frac{10 \times 80^{3}}{12}+0^{2} \times 10 \times 80\right)+\left(\frac{100 \times 10^{3}}{12}+(-45)^{2} \times 100 \times 10\right) \\
\underline{I=4.493 \times 10^{+6} \mathrm{~mm}^{4}=4.493 \times 10^{-6} \mathrm{~m}^{4}}
\end{gathered}
$$

Step 2: Determine shear stress distribution

Start the integration from the top and work yourself down through all sub-sections of constant thickness, ALWAYS integrating about the Neutral Axis.
The shear stress equation is:

$$
\tau_{x y}=\frac{V(x)}{I t(y)} \int_{y}^{y_{v o p}} y t(y) d y=\frac{V Q}{I t}
$$

We need to express shear stress segment by segment as divided in Step1.
i) For the range between $0.04 \leq y \leq 0.05$, i.e. Area 1 , the shear stress is given by:

$$
\tau_{x y}=\frac{25 \times 10^{3}}{4.493 \times 10^{-6} \times 0.1} \int_{y}^{0.05} 0.1 y d y=2.782 \times 10^{9}\left(0.0025-y^{2}\right)
$$

ii) Range $-0.04 \leq y \leq 0.04$, i.e. Area 2 , the shear stress is given by:

$$
\begin{aligned}
& \tau_{x y}=\frac{25 \times 10^{3}}{4.493 \times 10^{-6} \times 0.01}\left(\int_{0.04}^{0.05} 0.1 y d y+\int_{y}^{0.04} 0.01 y d y\right) \\
& =5.564 \times 10^{10}\left[0.1 \times\left(\frac{0.05^{2}}{2}-\frac{0.04^{2}}{2}\right)+0.01 \times\left(\frac{0.04^{2}}{2}-\frac{y^{2}}{2}\right)\right]=2.782 \times 10^{9}\left(0.0106-y^{2}\right)
\end{aligned}
$$

iii) Range $-0.05 \leq y \leq-0.04$, i.e. Area 3 , the shear stress is given by:

$$
\tau_{x y}=\frac{25 \times 10^{3}}{4.493 \times 10^{-6} \times 0.1}\left(\int_{0.04}^{0.05} 0.1 y d y+\int_{-0.04}^{0.04} 0.01 y d y+\int_{y}^{-0.04} 0.1 y d y\right)=2.782 \times 10^{9}\left(0.0025-y^{2}\right)
$$

Plotting these distributions between their limits, gives the following discontinuous parabolic distribution of shear stress:

Example 2: Two forces $P=18 k \mathrm{~N}$ and $F=15 \mathrm{kN}$ are applied to the shaft with a radius of $R=20 \mathrm{~mm}$ as shown. Determine the maximum normal and shear stresses developed in the shaft.

Step 0: Determine the geometrical properties of cross section:
Area of cross section:

$$
\begin{aligned}
& A=\pi R^{2}=3.1416 \times 0.02^{2}=1.257 \times 10^{-3} \mathrm{~m}^{2} \\
& J=\pi R^{4} / 2=3.1416 \times 0.02^{4} / 2=251.3 \times 10^{-9} \mathrm{~m}^{4}
\end{aligned}
$$

Polar moment of inertia:
Second moment of area: $\quad I=\pi R^{4} / 4=3.1416 \times 0.02^{4} / 4=125.7 \times 10^{-9} \mathrm{~m}^{4}$
First moment of semicircle: $Q=A^{\prime} \bar{y}^{\prime}=\left(\frac{\pi R^{2}}{2}\right) \times\left(\frac{4 R}{3 \pi}\right)=5.33 \times 10^{-6} \mathrm{~m}^{3}$
Step 1: Move eccentric force P to the center of the shaft
This causes a uniform torsional moment (Torque) about axis x by $T=P a=18000 \times 0.05=900 \mathrm{~N} m$ as shown. Centric force P also will produce a varying bending moment $M(x)$ along axis x. Axial force F leads to a constant average compressive normal stress at cross sections along the shaft. Step 2: Determine the maximum bending moment $M_{\max }$ and maximum shear force $V_{\max }$

Bending Moment Diagram
From the shear force and bending moment diagrams, one can identify that the shear force is uniform along the shaft with $V=P=18000 \mathrm{~N}$, and the maximum bending moment occurs at the section ABCD with a magnitude of $M_{\max }=P b=18000 \times 0.1=1800 \mathrm{~N} m$. So the critical section is ABCD.
Step 3: Apply the superposition for determining the maximum normal stress
The maximum compressive stress occurs at point B , where both the maximum bending moment $M_{\max }$ and axial force F will form a highest combined compressive stress as

$$
\sigma_{\max }=\sigma_{B}=\frac{P}{A}-\frac{M_{\max } y_{\max }}{I}=\frac{-15000}{1.257 \times 10^{-3}}-\frac{1800 \times 0.02}{125.7 \times 10^{-9}}=-11.93-286.40=-298.33 \mathrm{MPa}
$$

Step 4: Apply the superposition for determining the maximum shear stresses
As shown in table 7.1, the maximum shear stress occurs at point C , where both the transverse shear force $V=P$ and the torsional moment $T=P a$ give a highest combined shear stress as
The max twist shear stress $\tau_{\text {max }}^{T}=\frac{T R}{J}=\frac{900 \times 0.02}{251.3 \times 10^{-9}}=71.63 \mathrm{MPa}$ (at outer surface)
The max shear stress in bending $\tau_{\max }^{V}=\frac{V Q}{I t}=\frac{(18000) \times\left(5.33 \times 10^{-6}\right)}{\left(125.7 \times 10^{-9}\right) \times(2 \times 0.02)}=19.08 \mathrm{MPa}$ (at $N . P$.)
The total combined max shear stress: $\tau_{\max }=\tau_{C}=\tau_{\max }^{T}+\tau_{\text {max }}^{V}=71.36+19.08=90.44 \mathrm{MPa}$

