
 
Question 1: A steel machine part is statically loaded and has a yield strength of 320 MPa. For 
each of the following stress states find the factor of safety using each of the three static failure 
theories. 
 a) σx =  60 MPa        σy = -30 MPa       σz = -20 MPa        τxy = 40 MPa 
 b) σx = 70 MPa        τxy = 30 MPa 
   
  
 c)  
 
Solution: 
Steel is a ductile material so we will use the ductile static failure theories. First the principal 
stresses for the given stress state should be calculated. (refer to Tutorial 2 - Question 1) 
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a) Inserting the known stresses to the given eqn. 
 

I1 = 10 I2 = -4000 I3 = 68000 
 

68000400010 23 −σ⋅−σ⋅−σ = 0 
 
Recall the roots of the equation provides the principal stresses. Solving and arranging; 
 
σ1 = 75.21 MPa   σ2 = - 20 MPa  σ3 = - 45.21 MPa 
 
Factor of safety for each failure theories : 

 
i) Maximum Normal Stress Theory:  
 
(Theory states that failure occurs if any of the principal stresses exceeds the yield strength of the 
material.) 
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ii) Maximum Shear Stress Theory:  
 
(Theory states that yielding starts whenever the maximum shear stress at any point becomes equal 
to the maximum shear stress in a tension test specimen of the same material when that specimen 
starts yielding) 
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iii) Distortion Energy Theory:  
 
(Theory states that yielding occurs whenever the distortion energy in a unit volume reaches the 
distortion energy in the same volume corresponding to the yield strength in tension or 
compression) 

the von Mises stress  
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b) For the given stress state  
 

I1 = 70 I2 = -900 I3 = 0 
 

σσσ ⋅−⋅− 90070 23 = 0 
 

Solving and arranging; 
 
σ1 = 81.1 MPa   σ2 = 0 MPa          σ3 = -11.1 MPa  
 

Factor of safety for each failure theories : 
 
i) Maximum Normal Stress Theory:  
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ii) Maximum Shear Stress Theory:  
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iii) Distortion Energy Theory:  
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Note: The result according to Maximum Normal Stress Theory is a misleading result as the stress 

state falls into the 4th quadrant in the BA σσ −  graph. The result according to Maximum Shear 

Stress Theory can be interpreted as the most conservative one whereas the one obtained by 

Distortion Energy Theory is slightly greater and a more realistic one when compared with 

experimental results. 

 
  
c)  is the matrix representation of the stress state of an element.  
    
 
 
For the given stress state, 
 

 I1 = -110 I2 = 2500 I3 = -15000 
 

150002500110 23 −⋅+⋅− σσσ = 0 
 

Solving and arranging; 
 
σ1 = -10 MPa   σ2 =  -18.4 MPa  σ3 = - 81.6 MPa 
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Factor of safety for each failure theories : 
 
i) Maximum Normal Stress Theory:  
 

(max. in compression) 
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ii) Maximum Shear Stress Theory:  
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iii) Distortion Energy Theory:  

the von Mises stress  
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Question 2: A steel LPG tank is shown in the figure. The wall thickness of the tank is 15 mm and 
has a yield strength of 340 MPa. The full weight of the tank is 6500 kg and the internal pressure is 
3 MPa. Calculate the factor of safety of the tank according to the distortion energy theory.  
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t <==   the tank can be treated as thin-walled pressure vessel) 
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Solution: 
First the principal stresses should be calculated for both cylindrical and spherical sections. 
 
For cylindrical vessel: 
For point A: 

tangential stress   
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7503
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t
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longitudinal stress 
152
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�
 = 75 MPa 

 
bending stress due to weight of the tank: (consider weight as a concentrated force which is a 
conservative assumption compared with the distributed weight assumption) 
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At the bottom of the tank the tensile stresses will be larger, so the bottom mid-point is critical. 
Recalling there will be no traverse shear stress due to weight at the bottom fiber, the axial stresses 
are to be taken as principal stresses. Arranging as 321 σ>σ>σ ; 
 

150t1 =σ=σ  MPa  5.77b2 =σ+σ=σ
�

 MPa  3r3 −=σ=σ  MPa 
 
After calculating the stress state we can find the factor of safety using the distortion energy 

theory:  
2/12

31
2

32
2

21

2
)()()(











 σ−σ+σ−σ+σ−σ
=σ′ = 

n
Sy   

2/1222

2
)3150()35.77()5.77150(

340n








 ++++−
=     

 
For point B: 
tangential stress   =tσ  150 MPa  radial stre
 
longitudinal stress =

�
σ  75 MPa 
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Comment: Since a thin walled cylinder is used, as it can be seen in above equations, bending 
moments at point A and B can be considered to be equal. Also, pressure in the tank is small which 
results in small radial stress at point A compared to longitudinal and tangential stresses. Therefore 
checking safety factor according to stress element at point A is sufficient for this problem. 
 
For the spherical cap: 
 
on spherical shells stresses in orthogonal directions are same: 
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Factor of safety used for the production of the tank is 2.56 (the smaller of the two factors 
calculated above). 
 
 
Question 3:  A cast iron structure is loaded as shown in the figure. The material has Sut = 325 
MPa and Suc = 912 MPa. Find the factor safety of the structure using brittle failure theories 
at the points A and B (Coulomb-Mohr and Modified Mohr). 
 
 
 
 
 
 
 
 

 
Solution: 
The maximum bending moment on the shoulder is to be calculated using My (in N.m).
 

For machine elements made of brittle materials
stress concentrations should be considered. The
neck for this case is critical. 

Mx = Fz . 100 = 100000  N.mm 
 
My = Fx . 200 = 300000  N.mm 
  
T = Fx . 100  = 150000  N.mm 
 
Fz = 1000 N 
Fx = 1500 N 

T
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σy= 0

σB 
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The transverse shear due to Fx at points A and B is zero.

 
As stated before, the stress concentrations should be considered on brittle elements. Certain fillets, 
notches, holes, grooves on the element should be checked as critical sections, as the stress 
concentrates around these sections. 
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Kts.torsion = 1.25  (Fig E-3)          Kt.bending = 1.4 (Fig. E-2) 

 
Stresses at the maximum tension (point A) and compression (point B) points on the critical 
section, respectively:  
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σ1 = 163.84  MPa  σ2 = 0 MPa  σ3 = -7.64 MPa
 

Point B: 2
2

3,1 )37.35(
2

0160.7

2
0160.7 +







 −−±+−=σ 

 
σ  = 7.4  MPa  σ  = 0 MPa  σ  = -168.1 MPa 

 
 
 
                 
 
 
 
 
 
 
 
 
 
 

σB 
1 2 3 

 



 
 
Coulomb-Mohr Theory: 
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Modified Mohr Theory:  
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solving the equations :  S1 = 37.2 MPa  S3 = 844.8 MPa (= -844.8 MPa) 
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You can also use the equations 12.c, 12.d, 12.e in pp. 274 of Norton to obtain the same result.

 Question 4. The steel crankshaft is loaded statically as shown in figure. The steady force is 
counterbalanced by a twisting torque T and by reactions at A and B. The yield strength of the 
material is 420 MPa. If the factor of safety according to maximum shear stress theory is to be 2.0, 
what should be the minimum diameter of the crankshaft? (Note: In practice such problems are 
dealt with dynamic considerations. Here it is taken as a static example.) 
 
At point C, there is normal stress in axial directiondue to bending (max. moment). At point D, 
both axial stress due to bending and shear stress due to torsion exist. 
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which gives    d = 17.6 mm 

FA = FB = 2500 / 2 = 1250 N 
 
T = 2500 . 45 = 1.125 . 105 N.mm 
 
Sections at points C and D should be 
checked. 
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At point D: 
 

M = 1250 . 48 = 6 . 104 N.mm  
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which gives,   d = 18.36 mm 
 
Checking both points, point D found to be more critical. The minimum diameter of the shaft 
should be 18.36 mm. But it should be better to get used to accept preferred numbers in machine 
elements design, so it can be set as d = 20 mm.   
 




