

Static Spring Design Material Product * Inherently iterative > Some values must be set to calculate stresses, deflections, etc. > Figure 13-3 * Truly Design > there is not one "correct" answer > Table 13-4 with S > must synthesize (a little bit) in addition to analyze > Table 13-6 – a futoe

Spring/Material Treatments

Setting

- voverstress material in same direction as applied load
 - » increase static load capacity 45-65%
 - » increase energy storage by 100%
- ightarrow use K_s, not K_w (stress concentration relieved)
- Load Reversal with Springs
- Shot Peening
 - What type of failure would this be most effective against?

