
 

Transverse Shear Stresses in Beams 
 
SHEAR STRESSES IN BEAMS  
In addition to the pure bending case, beams are often subjected to transverse loads which generate 
both bending moments M(x) and shear forces V(x) along the beam. The 
bending moments cause bending normal stresses σ to arise through the depth of the beam, and the 
shear forces cause transverse shear-stress distribution through the beam cross section as shown in 
Fig. 1. 
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Fig. 1 Beam with transverse shear force showing the transverse shear stress developed by it 
 

If we look at a typical beam section with a transverse stress as in Fig. 1, the top and bottom 
surfaces of the beam carries no longitudinal load, hence the shear stresses must be zero here. 
In other words, at top and bottom surfaces of beam section τ = 0. As a consequence of this, in 
determining the shear stress distribution, note the shear stress is NOT EQUAL TO:  
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1 SHEAR FORMULA 
Recall that in the development of the flexure formula, we assumed that the cross section must 
remain plane and perpendicular to the longitudinal axis of the beam after deformation. Although 
this is violated when the beam is subjected to both bending and shear, we can generally assume 
the cross-sectional warping described above is small enough so that it can be neglected. This 
assumption is particularly true for the most common cases of a slender beam, i.e. one that has a 
small depth compared with its length.  
To determine the shear stress distribution equation, look at a loaded beam as Fig. 2:  
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Fig. 2  Beam with applied loads 

 
Look at a FBD of the element dx with the bending moment stress distribution only, Fig. 3, 
in which we do not need to look transverse forces if only horizontal equilibrium is considered.   
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Fig. 3 Length of beam dx with normal stress distribution due to bending moment 

 
Summing the forces horizontally on this infinitesimal element, the stresses due to the bending 
moments only form a couple, therefore the force resultant is equal to zero horizontally. Consider 
now a segment of this element a distance y above the N.A. up to the top of the element. In order 
for it to be in equilibrium, a shear stress τxy must be present, as shown in Fig. 4.  
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Fig. 4 Segment of length dx cut a distance y from N.A., with equilibrating shear stress τ xy 

 
Let the width of the section at a distance y from the N.A. be a function of y and call it “t(y)”. 
Applying the horizontal equilibrium equation, gives:  
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Substituting for the magnitude of the stresses using ETB gives:  
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Simplifying and dividing by dx and t(y) gives:  
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But since    ( ) ( )
dx

xdM
xV =  

then, the Shear Stress Distribution is given by:  
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where:  
V(x)   the shear force carried by the section, found from the shear force diagram  
I    the second moment of area  
t(y)   the sectional width at the distance y from the N.A.  

( ) ( ) AydyyytyQ
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y
′′== ∫     A’ is the top (or bottom) portion of the member’s cross-sectional 

area, defined from the section where t(y) is measured, and y ′  is the distance to the centroid of 
A’, measured from the Neutral Axis. 
 



 

2 SHEAR STRESSES IN BEAMS 
 
Consider the beam to have a rectangular cross section of width b and height h as in Fig. 5 
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Fig. 5  Computation and distribution of shear stress in a rectangular beam 

 
The distribution of the shear stress throughout the cross section due to a shear force V can be 
determined by computing the shear stress at an arbitrary height y from the Neutral Axis. 
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The second moment of entire area:    
12

3bh
I =  

With t = b, applying the shear formula, Eq. (7.3), we have 
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The result indicates that the shear stress distribution over the cross section is parabolic, as 
plotted in Fig. 5. The shear force intensity varies from zero at the top and bottom, y = ± h/2, 
to a maximum value at the neutral axis at y = 0  

 
From Eq. (5), the maximum shear stress that occurs at the Neutral Axis is 

A

V
.max 51=τ  (6) 

This same value for τmax can be obtained directly from the shear formula τ = VQ/It, by 
realizing that τmax occurs where Q is largest. By inspection, Q will be a maximum when the 
area above (or below) the neutral axis is considered, that is A’ = bh/2 and 4/h'y = .  
 
By comparison, τmax is 50% greater than the average shear stress determined from Eq. (1). 
 



 

 
 
 
3 COMBINED LOADS 
In the previous chapters, we developed methods for determining the stress distribution in a 
member subjected to different types of load such as an axial force or a transverse shear force, 
a torsional moment, and a bending moment. Most often, 
the cross section of a member is subjected to several of these loadings simultaneously. As we 
shall see presently, we may combine the knowledge that we have acquired in the previous 
chapters. As long as the relationship between stress and the loads is linear and the geometry 
of the member would not undergo significant change when the loads are applied, the 
principle of superposition can be used. Here we are going to discuss 
the situation due to tensile force F, torque T and transverse load P, as shown in Table 1.  
 
Table 1  Superposition of individual loads 
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