Hrﬂ mathematical language of quantum mechanics is En.on_cnan_ in Eﬁ
aum.m_ﬂﬂ It does not contain mE., phiysics.

LA The Mathematical Language of oﬂuas Mechanics

o formnlate Newionian Eoo_umuEm the Emﬁwnﬂmunm._ language om differ-
ential and integral calenlus was uoe.&ownn_. Though one can ger some kind
of understanding of velacity, acceleration, ete.; without differantial calcglus
{in partienlar for special cases), the real meanings 6f these physical notions
in their full generality become clear only afier one is familiar with the idea
of the derivative. On the other hand, though. the abstract mathematical
definitions of calculus become familiar to us only if we visualize them in
terms of their physical realizadons. Nowadays, no one would attempt to
:Haﬂmﬁnm classical mechanics withont knowing caleulus, - -

- Quantum mechanics, 160, hasits mathematical langiage, whose develop-
ment went parallel to the development of quantum’ mechanics and whose
creation in 1ts full generality was Emn_hmn_ by the needs of quantum physics.
‘This is the language of linear spaces, lincar operators, associative zlgebras,
etc., which has meanwhile grows into one of the TRain branches of mathe-
menmluummh algebra and funcional analysis. Eﬁonm_u eme ntight obtain
some sort of vnderstapding of guantum physics witkout knowing its mafhe-
matical langnage, the precise and deep meaning of the physical notions in
Their full generality will not reveal themselves 1o anyope whe'does ot an...
stand it mathematical Eﬁmé G TicRE i}
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" A Bnear space is a set with very little mathematical structure. We will
equip it with more structure by defining a sealar product. This notion s
again a generalization from the three-dimensional real space R,

A lingar space is called a sealar product space (or h:&&mma. Spuge OT

pre-Hilbert space)ifinita ?,unuou (, W) of the two vestors ﬁ € B isdefined
which is & roﬁﬁwnu 3ﬁ8¢an and has the following wnowmnnnm

P20 wum Qy =0 if =0 {22a)
=80 g My (2.2b)

_”En vﬁ, aﬁaﬁn SEE@ SE pqmﬁm”_. i _
_ & pE =ulg. ) (2.2¢),
an_m »ﬁmu&oﬂoog_mﬂuhﬂwmﬂm e T v =
@+ b= BV + (0. (2.2d)

. This function is called the scalar product of the clements ¢ and yr. The
Enﬁ scalar product in %, (a,by=2-b clearly fulfilis the conditions.
(2.22)-(2.2d) with zil numbers being ezl instead of complex.

Asin B onecalls two vectors ¢ and  orthoganal if »*

(@, ) = 0.

With the scalar product defined .3 @m& ﬁb& one defines the norm
&) of a vector & by -

191 = +/ (o &) 24

For EHQ vector w different from the zerg qmﬂo;. one mn always defing a
vector i = /i |, iwmn,; has the Hu_d@a_d. __ W| = 1and is called a normalized
VECtor.

Sometimes ane uo&m in a lingar space & more manﬂmm nodou ﬁ.wmb the
scalar product, the bilinear Hermitiza form. - ’

A compiex-valued Eﬂnﬁou A(®, : u 3. dao vector argumtents isa mmﬁaﬁnw
Jorm il it satisfies

W Wy =W B (2.55)

g, afy = ablp. ) (@20, . (2.5¢)

B, 4 @) = Bl ) + hps, ) nmm&

If in addition h satisfies - . e
Ry ¢ = 0 ) _ (2.5a)

for every vector _u. then £ is said 1o be a posirive Hermitian %oﬁ:. A ﬁorﬁﬁ
Hermitian form is called positive mmrw_wﬁnm n,

Fom Mg, ¢) =0 follows $=0 for svery 392. a__” (28
Thus a Hermitisn form fulfills the ncu.&ﬂobm (2.2b). (2.2¢}, and (2.2d), but
not the condition (2.22) for & scalar product: Howevar, a- positive definite
Hermitian form 1s, by (2.6), a scalar produst. : gl o =

(23) .

L3 Linear Cperators S

Positive Hermitian forms, sgnw are ‘nol necessarilv scalar produsts.
ﬁ mw the Cauck wrmnx:mﬁpm%enwa&f inequality:

|, E_w = b, I, ).

18 moﬂﬁ«a definite, squality wo_% g = wp for some s e C.

A set M in the lincar space @ is called a subspace of @ if M isa linear space
er the same definitions of the operations of addition and multiplication
& number as given for @, Le, {1t follows from ﬁw = E. that a¢ e M and
el 2 M

v ression of 9« ormoaydy + a,d, s called a maﬁﬂw combination of
SCLOTS Py Doy Tou Gy The VERIOLS By Ba.v. . @, are said to be linearly
mmmm_&mzm if thers exist numbers ag, a,, ..., &,, 0ot all zére, for which
L Fa gy e b d =00 IF the equation @y, + wady + -

g, =0 _5._% only for @) = a; =---=a, =0, thon the vectors ¢,
vy iy, axe called linzarily hz%ﬁmxmmﬁ A space @ is ‘said to be finite-
ensional and, more precisely, n-dimensional if thére are # and 'not more
én 7 linearly independent vectors in ®. If the nimber of linearly indepen- |
tvecters in @ is arbitrarily great, then @ is said t6 be infinite-dimensional.
system of n linearly-independent vectors in an n-dimensional space @
called a basis for @,

»b.&ag%gn betwean two alpebraic structures o and B3 a one-to-one
rrespondencs between the sets o and @ (e, 1o every g & & there corre-
nde exactly one b & @ and vice versa: a «» b), which H.nmanﬂ? the Emﬁ-
vH.Eo QpeTaiions.

H{d Jnear scalar product spaces % and ea are, thus, HmoEoGEn if from

@D

bz fu ffed,
Ev
- a5 ged
Jollows that i
_— of + Bgof + %\u - wfeC 29
(fi)e = Cz - @10}

Scalar umcasﬂ spaces (and in particular Fiilbert spaces) for which (2.9}
and (2.10) are fulfilled are also called isometric, Tt often happens that two
calar product spaces are isomorphic 89 nesr spaces, L.e, 4re in a one-to-one
Hﬂwonnmunn which fuifills (2.9), but az¢ not isomorphic s scalar product
aces, i.e, the correspondence does not falfil G 10).

13 Linear Operators

gotors in R can be transformued ito each other. One example is the
Totation R of a vector a inte a-vector Ra = b. In analogy to this voe defines
isformations or finear operators om a linear space ¢. A fumcton 4,
el . that maps gach vector ¢ in a hinear %mgeﬁdomﬁﬂonﬁme

Ad =y, B s R, "
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is called a linear operator =, for all ¢. v
A+ ¥ = A4S + Auy
\mﬁnﬁv = m«mﬂ
1t iz called anritinzar if it EEE ,nv.ﬁga c_. Awbu maa _..num.sc_u "
Afad) = a*Ap,

where a* g the complex conjugate of o

The operations of addition of twe aperators A 4+ B, multiplication of an
operater by a complex number @4, and multiplication of two operators A8,
are defined in the following way: . i

(4 + By = A¢ + B,  (ad)d = al4d).

forall ¢ =@ It is sasily-verified thar 4 + B, ad and mw....pao. H..Baﬁ. vuaummoﬂm
i and B are linear operators.

e & and a'e it fulfills the conditons
{3:1)
(3.2)

3.3)

(AB)p = A(B¢), (34)

Of special mterest are the zero operator, nnuoﬁnu 0, and the Eu& aperator

or identity aperator, denoted 1, which are defined by

W=0 Té=y 3.5}
for every +f & . Note that U on the left is the Nﬂo operator, sw&a 0 on the
right is thezero vector of (2.1e) ’

For every bnear operator 4 defined on all of @, one can define an aperator
A" by (A, §) = (@, AY) for every &, ¥ & @, The operator ATis called the
adjoint nvm_..ﬁaw of A. An operator for which A™ = A 1s called seifadioint or
Hermitian,'

“The defimition of linear _uwﬁﬁoa “was inspired by the properties of
transformations ¢on the three-dimensional space, Lingar operators on a
linear space @ may represent such transformations on the physical three-

dimensional spacs, but they can also. have other physical interpretations. I

particular, im quantum physics they represent physical observables.

. An important notion is the noticn of zigenvalue and elgenvectior. A
symmetric tensor | in three dimensions can be diagonalized by transforming
to its principal axis: . .

(3.6a)

where [, is the eigenvalue and a the corresponding eigenvector. Similarly
ome defines eigenvalues and eigenvectors in a linear space @ A nonzero
vettor ¥ e @ is cafled an eigenvector of the linear operator 4 if

A =2 with isC.

[+a H.m?..,»..

Ais calléa the eigenvalue of A4 corresponding to the eigenvector Y. For a
given operator A there may be many (perhaps infinitely many) &mﬂnﬂ

. p. We will usnally uge the teem Hermitian if we do not want to distingnish betweap the mathe.
maticaily precisely defined noticns self-edivine, essentially seif-adjoirz, and symmatvic.

(3.6b) -

L3 Linear Opgraters 7

R_H spaces which ac ﬁﬁ rmaa one mEan Emanﬂmnﬁoﬂ. in that space,
4 is a Hermitian operator, AT = 4, then clgenvectors and sizenvalies
ve the follewing properties:

£ (1) Allcigenvalues are real .

(3) If @, and ¢, are cigenvectors of 4 with eigenvalues 2, and A,.
© respectively, and H.H‘ Ay # Ay, tEen by and §, are orthogenal to cach

other, (9, @) = 0. ;

.d_n notton of eigenvalre is important in guantum physics: As B@nnon&
wo&u the operators represent the observables of a physical syvstem. The
mnE&Enm then represent the numbers which are obtained in a measurszment
7 one of these observables: )

An operator B is called the inverse of an operator A4 if

BA=AB =l (3.7a)
15 .mmn_mﬂma by
) B=4A"1, O
gﬂﬂ. operator [V is called & unitary operator if -
UL = UL = {3.32)
ecausc of (2.7) one defmes a nﬁmg.ogﬁwﬂmﬁ also by the condition:
vt=u-t (3:3b)
et 4 and B be two operators. 4 and B sre said te commute if L
[A.Bl= 4B — B4 =10, (35)

;. B] 13 called the commmtator of A and B. :
. A set of Is an (assoctative) algebra with unit alement iff

.v_ & 1s 2 linear space.
u_ For every pair 4, B € o there is defined 2 Hhaasn_.. AB ¢ of such that

(AB)C = A(BC), | (3.10a)
A(B + C) = AB + AC, (3.10)
(A 4+ B)C = AC + BC. (3.10¢)
- (@A)B = A(2B) = aAB™ © (3108}

_uu. There sxists zn elerment u E of such that ) .
14 = AI'='A (A1

forall A e _
maomﬁ #, of an algebra is called a subalgebra of & if o, is an algebra with
he same definitions of the operztions of addition, Eﬁﬂounmnou by a

number, and multiplication as given for &'; ie, ¥ from 4, Be o, it follows
hat 4 + B e ), ad € o, and 4B & ..
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- An m._w.“_unm o 1s called a *~algebra if we have on the &uaﬁm a *-gperation
(invelution) A4 ++ A" that bas the following defining properties:

(d) {aA + bB)t =GAT = BB,
(AB)t = BtA", 3.12)
(A7) = 4 %
=1

where A, B e.of and & b e T. From the definitions of the surn and product
of operators with a number—given it (3.4)—and from the defmition of the
formal adjoint operator, ong can see that the set of linear operators fulfills all
the axioms (a), (b}, (c). and (d) of & *-algebra. Thus the s¢t of linear onﬂmﬁﬁ
in a Linear space forms 2 *-zlgebra, A *-subalgebra of this algebra is called
an operator *sglgebra It can beshown that In & certain senss every *.algebra
gan be realized as an operator *-algebrain a scalar-product space (generzliza-
tion of the Gelfand-Naimark~Segal reconstruction theorem), In quastum
mechanics physical systems are assumed to be described by operator

*.algebras. . .

Aset X, X,, ..., X, of elements of & is called a set af generazors, and &
is said to be generated by the X (i = 1, 2, ..., n)iff cach element of & can be
written :

CA=c+ TOX <Y VXX, +- (3.13)
=1 i3
where ¢, ¢, ¢Y, ... e 0. i
Defining algebraie relations are relations among the generators
PX)=0, (3.14)

where P(X ) is a polynomial with complex coefficients of &m n 48.52& N &
An. &mﬁnﬁ Beuy

B=bl+ 30X+ D0+, (3.15)
where b, ¥, ... € C, i5 equal to the element A &.G 15) can be brought mto

the same form (3.13) with the same coefiicients ¢, ¢/, ¢, ... by the use of the
defming relations (3.13).

1.4 Basis Systems and Eigenvector Decomposition

As i the three-dimensional space [, one can also intreduce a system of
basis vecrors in a general linear space ®. In 5* one conveniently chooses a
systems,of three normalized vestors

epesn ey, lel=1
which are crthogonal to each ather |
ﬂ_.ﬁ-mﬂ.ﬂw.__.u.- w.u..w-llkl_.uNa.mr -

1.4 Basis Systems and Bigenvector Decomposition 8

nch an erthoncrmel basis system ¢an also always be chosen in a linear scalar
rduct space @, 'We denots thess basis vectors in various ways by

=ley=| . i=1,23,. @1)
“Fheir sealar preducts are written in one of the following ways:
(e e = (ele) = Gliy =8, 4j=12,.. (4.2)

6 is N-dimensional then Ee.a are ¥ linearly independent yectors in this
arthonormal basis system. N can be infintte:

The basis system fulfilling (4.2) can be chosen arbitrarily. but it is con-
ient to choose it such that the particulas phiysical problem under in-
estigation takes s simplest mathomatical form. For exampls; 1f one
describes a rigid body with moment of ipertia tensor-§ in the usual feres-
EEwnﬂon& space, then it is useful 1o chooge the basis system. e =1 23

On ~f- mhl ﬁ.LQ%Cv

woommrrmoncaEa to (3.6a)—eiganvectors of the tensor 1.

Similarly, it is extremoely useful to choose as the basis system for the space
physical states, @, eigenvectors of an operator 4 which represents an
portant observable of the physical system tmder investigation (most
frequentiy one chooses for 4 the energy operator H, the position operator
or the momentum operator P). Thus cne-would want to choose far the
is systam a set of vectors ¢, which fulfill

Aej = a,e,,

aye G, (4.3)

vnqn the a; are the eigenvalues. Thess normalized eigenvectors are often
denoted by

a;).

-symbol > with a.letter v, g oriin it annouu.n 4 Vertor ¢, ameigenvahie
ran index i of 2n sigenvalue is called 2 ket the mﬁuc& ¢ | with a letter in

k_nb or- & =

In the thres-dimensional space R* every vector v can be expanded with
respect 10 a basis system of eigeavectors of any symmetric tensor, ie,
é#ﬂamﬁ u;

¥ n.. 2 e, P = mH..,. (4.4a)

i En coordinates or noEuoEﬁs of the vector v with respect 1o the basis
e eigenvectors {e;} of the symmerric tensor I (3. 6a). The same can be proven

"P. &, M. Dirac (1958).
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for any finite-dimensional linear scalar product space @, This means that:
For every Hermitian operator 4 in'a finite-dimensional space @ therc exists
a system of elgenveriors

Aej=mpe,  i=13,...,N = fite, 3)
such that every vector g e @ nmm_ be ﬂ.ﬁﬁmﬂ as
¢ = m_ﬁn: )= M efale). (4.4b).
= _. im )
where the complex numbers
= (&, 5) = (e #) (4.5)

are the components of. :.ﬁ 629. ¢ with R,..ﬁmnﬁ to the basis {&). .

The set 6f o4 (which are real if A is Herpitian) is called the spectrum of
A and the above statzment is called the spectral theorsm ﬁoﬂ the operator 4
in a finite-dimensional space. mhssgon. (44b) is owsna the muan.& decom-
position of the vector o or the eigerivector exparision of P

For infinite-dimensional spaces the above statement is in general not
correct. Though there is always a countably infizite set of orthogonal basis
yetors, every self-adjoint operator niesd not have a countably infinite set of
eigenvectors which form a basis. Furthermers, quantum physics also requires
operators whose set of eigenvalues is a continuous sct, OF even @ UIOD om a
disrete set and a continuous set. -« « _

It could: bave been- that all operators iEnr mﬁwnwn in quantum nEﬁnm
have the property that.the: set-of their eigenyalues is discretes That would
have:been the case-dl ther measnrement for every observablé in quantum
physics could n_n,@ lead 1o a discrete set of aumbers. Then only-an infinite-
dimensional generalization of (4.3) and (£.4) wonld be needed. However,
there are hservables in physics whose measurement can Jead to any aumber
out of a continuous set of mumbers (6.8, the observables momentuem and
position ¢ap jn miany cases take ny value x with —ot < % < +o¢). There-
fore we need not only the infinite-dimensional gensralization (which can
be obtained in the Hilbert space) but also the continuous; infinite-dimensional
generalization of (4.3) and (4.4). There exist in fact spaces ®—or more
precisely, there exist topolagies for infinite-dimensional linear spaces—for
which the mmuﬂ.mwnuncn of the finite-dimensionalt mﬁunﬁ.& decomposition
can be proven for all self-adjoint operators needed in physics.® This geger-
alization is the nuclear spectral theorem. As the eigenvector decomposition
i8 50 important for wwﬁ_ﬁ we will E&_, use spaces mon é?nm.&ﬁ theotem
isvalid.

‘Wa cannot present the mathematics here and will explain the discrete and
aoucucocw gigenveetor decomposition in an infinité-dimensional space in
mbﬂomw to the fmite~dimensional case (4.4b) or (44a) We consider the
dizérere and continnous cases separately; the mgﬂﬁ case of ‘an arbitrary
self-adjoint aperatar of physics will bea combination of these two cases.

* These spaces @ wud their conjugates ®7 (cf Section LT below) (and the cloyely related
theory of digtributicns) and the tdplet @ = & « @™ they form with the Hilbert space #° did
in fact not exist when they were uesded for quanmiam meshanics. The creation of thess mathe-
matical sirictures was inspized by the development of quantum theory.

I.4 Basis Systems and Higeaveetor Decemposition . 11

MWe will call the self-adjoint operator with 4 discrete set of cigenvalues H
“and the operator with a continuous set of eipenvalues 0. Then the sveciral
JieorEmm AsserTs! .

“There exists a system of cigenvectors | E,) in the diserete case and [z}
in the continuous sase;

HIE) =E‘E) (#.3d)
; Q%) = x]x7; (4.5¢)
uch that every ¢ e @ can be expanded in terms of these cigenvectors:

¢ = m EAAD

.m\._..“..m.“o» m»v m_.u. LR
~CEMmMEXEM< -0,

(4.4d)

&= _. ui.xv_na_&v
‘and ¢ = 0if and enly if all its components ere zero, 1.2, (£, _n_& =1 forall
E.and {x|pp = 0 for all x>

system of eigenvectors | B} or |x) with these praperties is called com-
m or a basis system, Thus the spectral theorem asserts the existencs of a
noﬂﬂﬂw system of eigenvectors of a self-adjoint operatar. (E, |4) or {x|d)
sire called the coordinates or components of ¢ with respect to the basis
system {|E )} ot {[x}). respectively. They are, as in the three-dimensional
‘case; the scalar preduots of the eigenvectors with -

{x 87 = (|x). &) {4.5c)
(E,[6) = (1 E,). 4. {4.5d)
_dEm (E, #) is the infinite-dimensional gemeralization of the v; in (44a),
and {x|¢) iz the continnous mfinité-dimensional gencralization o_. T
iWhereas the |E,) a7 proper eigenvectors, the |x) are called generalized
Qmﬁg? or, eigenkers. Though we can manipulate themm as if they wers
proper eizgenvectors, mathicmatically thereds an important difference between
the discrete basis vectors LE,) and the continuons basis vectors |x): the [E.)
arein D whilethe | x)arein O, the space of conrinuons antilingar funciionals
over @, We shall define and Gn.o_Eu these mathsmatical notions in Secton
I.7. Here we shall try to convay the meaning of these generalived sigenvectors
by analogy to the finite-dimnensional csise,

The set of eigenvalues £ in (4.3d) is called the spectrum of the operator
H.If H has a discrete set of sigenvalues, the spectriim is called diserete All
the coq&wou&um gigenvectors |E,) enter into the disciete basis vector
expansion (4.4d) and there are no [urther. eigenvectors with disciete sigen-
value that enter iuto the basis vector expansion (4.4d). The set of continucus
tigenvalues x, whose sigenvectors enter info the generalized eigemvestor
expansion (4.4c), is calied the continuous spestrum of the operarer Q.

(4.4¢)

* The simple nondegenerate form (4.44), (44e) is walid'if the operator A (8 or Q) is eyekic,
Le.. if there exists un f = D such: :.5.« AY = iy geacrate the cntire pace @, which means Su.ﬂ
any.¢ e @ can be wrillen s ¢ = .wani whers Sy, A COMPlET oumbers. Unmﬁ_ﬂ.ﬁnmﬂﬁnﬁ
which ocour whea more than ona nEuEB number 38 needed, will e discussed later in the text.
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In gengral—and this depends upon the properties of the space @~ there are
more ganeralized eigenvectors of @—ie, kets which fulfill (4.3¢) and whose
procise definition will be glven in Section 1.7 —than entgz In the clgenventor
expansion (4.4c) Their generalized cigenvalues we will not meludé in the:
definition of fhe continmous spectrum. Whereas the discrete eigenvalues of a
scli-adjoint operator are always real, the generalized cigenvahies need not
be reals they can be zeal or complex, and even if they are res] they need not
necessarily belong to the spectrum, i.e, appear in the integral (#.4c). But
for 4 self-adjoint operator thereis always a real subset of the sl of generalized
eigenvalues whose eigenvectors are somplete.
The most general form of the specmal theorem for an operator A
representing a physical observable is a combination of (4.4d) and (4.4¢);
b= Tladaley + [daaaled, (442)
where the sum is over the discrete spectrum and the integral is over the
(absolutely) continnous spectrum of 4. It can happen that some or-all values
g, appearing in the sum also appear in the integral Then they are called
discrete eigenvalues in the continuous spectrum. If this-happens for a; then
|ay), is still orthogofial to all |a) ncluding |, ie.,

(@99 =0 for ¢*= |dalad<ald.

The spectral theorem (44b), (4.4d), (44¢), and (4.4g)—which we have ta
aceept here without proof®—is the gentral statement, from which the other
results of this munmoﬁ.moﬂai.. B T Sl | o

To sewthat the coordinates (E,/¢) are indesd what their notation indicates,
namely the scalar product of the vector with the basis vector | E,}, we calculare
the m%@ﬂﬁ&ﬂﬁﬁom nh...n_.ﬂv with ,Euﬂ..@m@ﬂm.ednﬂeh _ML From Q..m__&.._» i follows

8 ] ‘ : .- .
(1B, ¢)= TE, [EJKE, |¢). (4.6d)
e R au.a.
mmboo‘ |E.) and ‘E,) are eigenvectors. of the same-Hermitian operater H,
if B, + E,,they moust be orthogenal to each other, - = e

(B) ED=0 . @7
For E, = E,, we normalize them: mowm . L
Vo (EXIEN = I EJF = L. (8.7

5 The FriTs-diciensionad cass (4:4b) is wsily reduced to the probiem of thy mumber of roots
of & polynomiaf of degree N, @ shown In Ssetion L5 below in particulze by Equarion (517
Equarions (2.4d) and (4.4¢) aced muck more mathématical preparation, of L M Geélfand o al
(1964), Val4, or . Mauin (1968}, - =

L4 Bagis Systemns and Eigenvector Decomiposition 13

is we combme and write

(1B EN = (BylE) =fpe =8, mm=LL.., (@7
hete the Kronecker ¢ is defimed by -
- 1 fern=m: E =E
%a.._.n...liﬁv._ 2 = A = e 4.5
B ‘.—o forasm; ' E,#E,. S

50 these eigenvectors of the self-adjoint operator H have the property (4.2)
ag required of orthonormal basis vectors. Inserting (4.7d) into (4.6d) one

tains: - . : ;

-
CE) &) = ). 8,(E,14) = (E.|$) __
. =3
"his is the expected identity (4.5d).
The speciral theorem (4.4d) can be written in differeént forms: cne can
mit the arbitzary vector ¢ <@ on both sides of (44d) and obtain the
spectral resclution of the identity operater it ) o

(+.3)

e 1=¥% E)E

e s #=0 ¥
ne can multiply hoth sides of (4.4d) with the operator H,
H$ = ¥ HIEXE |#)= ) E,|EXE,|d)
K : f Aogv] :

and then omit the arbitracy vestor ¢ on both sides to obtain:

; o (4.9d)

H= ) E|EXE,. (4.10d)

ne i}
This identity between the opsrator -H and the weighred sum of operators
£ JE,| is called thie specétral resolution of the self~adfoint operator H wirh
Alscrete FpecITin
-Ome can take the scalar produet of (4.4d) with another w € O, then bne

bramns -
W ) = ¥ (IEXE, ) = ¥ EJEPEID: (4.116)
.. ) a=0 ) - A0
In particular if one cheosss Y = $ one obtains .
©0 -]
l2l* = (¢ &) = Y (@IENE, ¢y= ¥ I(E I  (4.12d)
a=0 . amp

Equarion (4.11d) is the analogue of the formula

2t .3

._4 HM_M nasna:ﬁ?.n_._m..x..u._._.u_dE&mﬂﬁabuﬂﬁnaﬁnnmunnin:naup:gm.:ﬂ:umnn
» 5% ' T o
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Ag In the three-dimensional space B 2 vector ¢ is compléetely specified
by its components (£, |d) with Tespeel 1o & given bagis |£,). But unlike the
{hree-dimensional space: R°, where any sequence of three real vumbers
{34, Xz, %5} defines a vector x. or uniike the W-dimensional complex space
T" where any sequence of N complex numbers (&, &2, ..., {y) defimes a
vector X, an arbiitrarcy infinite seguence of complex numbers

_“Q__- ﬂ.». ﬁ.u....mﬁwo...u

dees notin gensral define a vestor in @, As can be seen from (4.12d), in order
that the scalar product be defined, the infinite sequence that defines a vector
must at least fulfil} the:condition

(@) = [dy Gxlys<rian, (460)

¢x| i is the coordinaie of the vector ¢ along the direcrion of the basis vector
|55 L1x D, ¢)is the scalar product of ¢ with the basis vector | x). These two
tities should be the same, as stared by (4.5). Therefore (4.6¢) has the form

fad -+ B}
(xlgh = g dy (x| <y, T )
-
The scalar products A ¥|@> are funcions of the continuous variable y in
the satne way as the scalar products (E,|4) are funciions of the discrete
riable E,. Equation (4,60 therefore says that the mathematical quartity
{x |y has the property thatit maps the function ¢(y) = {p|¢) by integration
to its valug at the point x: §(x) = (x|¢). There exist no well-behaved and
ot gven a locally integrable funclion which has this property.
Such 2 guantity is called a distribution or a generalized lunctivn. The '
distribution {x. ¥} defined by (4.6¢7) for a class of well-behaved functions
Gy = (x| is ﬁ.mna. Ew Dirac, 4- Eﬂnﬁon and is denoted in analogy to

TIo,l < s, o ($azd)

i=1

L, it must be square summabls, I one further wants to demand that every
operator A of the set of operators which represents physical observables be
defingd in the whole space @, one has to-require that all 4¢ are well defined
in @, which means that (A, Adh) must be fivite. Choosing A = H® where
p=01,2... s any power, one obtains for this requirement the following
condition: h g

TGl = o@ia _ @)

— ¥)is a generalization of the Kronecker mm.. £ &Enw is usnally u&b&
j (4, m”_ but which could as weil wwq.,n been defined 3

(HP g, HPdi) = M@EJFVE _m:au

auc

Mmexﬁgxu <% forany p=0L2 ... (313d)

weg v

Thusmot only will {E,|&)[n =0, H.P ++x have to be squars summable,
but also: {EP(E_ | 4)}-has to be a sguare summable. sequence for any p =0,
L Zsanie
. Fortunately these (topological) questiond of what happens at infinity are
not very rélevant for physics as only 2 finite namber of the [(E, |#)] can be
determined sxperimentzlly.

We now tumm to the confinucus specttum and repeat the sbove con-
siderations for the contivuous case. We caleudate the sealar product of @
with the generalized eigenvector ;x> using Equation (4.4c):

(E., 3 = w,omm: B, _& (4.6d"
-

for a elass of infinite sequences {(E, _ax ﬂwnu we HE use function se-

uences of the d-type in Section TL.8, we will see in which sense &(x — y) can

considered ag a generalization of the fdohr-hand side of (4.8).

The eigenvectors |E) are normalized ta 1 by (4.7"); the generalized

genvectors |A% E,Eu_bm {4.7¢) are called d-function normalized They are

not dimensionless, but have the dimension 1/, /dim dx. For example, i dx

a3 the dimension cm, then {x'|x} has the dimension em™", dod |x3 has

¢ dimension em ™ ¥,

Tnstead of the gemeralized eigemvectors with S-function nermalization

(4,7¢) ome could also choose generalized eigenvectors of @ with a different

ormalization. Instead of (4.4c) ane writes 5

(5.8 = [dy (b Iy 1.

This we rewrite with the following definition n..n :.._n new symbol

b= au)dixley )

. $elyd = (=0 1y3) ) . : i :
! ) iﬁmﬂ the |x}, are again eigenvectors of @: :

* More precisely. nsing the notions that will b introdaced in Seetion 17, we should say thar - QXY = x . (8.3¢,)

we caleniate the value (|2, @) of the functional |x) ar the vector ¢ € O, ([ §) = {x|P>is2

gezaiization of the usiel scalar product mua nO& = du(x)/dx is & real uonunmm:é and Eamﬁ_uw function.
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Tn order thar the new components of ¢, the ,{x|&), be tbe scalar product
of ¢ with the new gigenvectors | x},. L, in order thal

S gy = (A0 dy 1215, 0100, (4562))

one has o demand
au(y) pix yY, = dy {xiyy = dy m? -9

So the normalization of the new mgﬁ.%& elgenvectors 1s
di v

Sl = (2

Thus when the integration contains the weight function h_“t. the m@ﬂﬂmﬁnm
gigenvector normalization contains the factor p~ (x).
The transformation _ungonu the twa basis systems i3

vlm@ - )= pT )8 ~ ¥ (4.7,)

_a:. _Hv (414)

Y noc
The mast mm@nouﬂma choice for p(x) depends upen Ea property of :5
operator Q and its relation to the other operators of the problem.” -
As in the case of the discrere specirum the spectral theorem (4.4¢) can be
written in different forms. Ogﬁﬂm the E._uﬁmd. _aﬂou e one obtaing En
resolution of the identityr . -

Jre ._.&%m_v__ﬁ_ uw_.n_mwu% Xpp 1%

Multiplying both sides of (4.4¢) with the operator O and then oBESm the
P.r..aﬁmnu. VECtoT .‘u on& ugﬂm m.mB.n _“.p unu wmm H...oﬂ_ nm.nn_

(4.92)

.P &n x _Hv AH_ (4.10¢)

&Bow we nmE the %Sﬂ& HgoH.g:on om the self- m&PE,. operator @ with
_“m.‘cmo_cﬁwd contimuons Spectrum.
“ The scalar product of two vectors ¢, y & ®, obtained from (4.4c), 1 15

.@_ &) = de {Wlxy<x). 4.11c)

¥ The nuelsar spectral “heorsn for an arbitrary seli-adjoint operazer doms i Eaet oot assert
{4.4g) but (442 ,) witha general measurs dui), and it does not say anything ooyt 1he spestral
measuredyfx) waddition tothe asscrtion ol its existenew. However, all operators used in physics
are of the special kind for which either dufx) = a{x) dx with p(x) as described above {such
operators are said 1o bave an absolubely continuoeus spectrum and for them ong can E.ﬂﬂu.w
make the tnmsformation (4.24) from |x}, 70 ') or they have the propirly that dulx) =
Mn.xA Bz — xd) dx (thess are the operaters “with discrete spoctrum), or they Favs both anab-
sohutsly SnﬁEhoE Eu.m & E.aa.o.ﬁ ﬁoﬁu:ul Ba 2&& 1% the most m_waﬂ.wu form newced for
paysics,

1.4 Basis Systems and Bigenveetor Decomposition 17

From (@) = (¢, ¥ and from - (¢. %) = %&A&_Hv\,.ﬁ iy for dany
W & ® one concludés that for the generalized scalar Hﬁoa;nﬁ one has the
oﬂﬁmoﬂ as for the stalar produoct:

W%y = {xlyp*.

(x| @ = Plx)

‘write (4.11¢) in the lorm

el ® = YAl

(. &) = Ta GRS (4116
particular, if one n?oammw W= ¢hone m.U..Smnm.
14 = (6.6) = [dxgrat0 = [axloP. G129

om ::m wesesthainotany B.EE function ¢(x)can give the components
f a yector ¢ € O with respect. 16 the eantinuous. basis system |x> but only
se functions for which the integral on the right-hand side of Equation
12c) exists, i.¢., the square mtegrable functions.®

I one n_oﬁmu% of the space ® that on all its elements the operator Q E&
¥ arbitrary powsr thercof, @F (p = (, 1, 2, ...), be well defined, then one
ust have that

10761° = (0%, 0%) = [2x: |9 < = (4130

1§ $(x) must decrease faster than any power of x. If ather operators are
alsd to be defined né&wﬁm in @ further conditions will have to be imposed
the compotients (x| ®) of ¢ € ©. Thug the Hnmrmmﬁ_g of @ must be much
atter than L2 An example of a realization of @ id the Schwartz-space S. § is
efined #s the space of infinitely differentiable complex-valuced functions
which togsther with their derivatives vadish at infinitely more ramdly than
¥ power of 1/x. We call those functions well behaved.

. It can be that the space ® is such that the components of all vectors Y e ®
with respect to the continuous basis X3, Y(x) = (x|i), are boundary values
T analytic functions iz) om the coraplex plane or a.démain of the complex

. The scalar produet spacs in which the scalar product is realized by she ‘ntegral (3.117) is
called the space of square integrable fopetions £ 11 the scaler produet spaceis complets then
itis called a Hilbert space. For this.ceason 4 stajar producr space-is also called a pre-Hiiberr
pace The space of squars _u.hcﬂm.zn”. invegrable funcdons s one cealization of the Hilbert
pace Anotier realzation of the Iilbery wﬂbﬁn # the smpace o*. Square summable infnite se-
uzucss, of. (4.12d%,
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plane, e, the lower half plane. Then the contour of integration in (4.11¢7)
can he deformed and one obtaing

[ az g0
L

o) [ axwrcaec =

= | d=Cylzp iz (&15)
3

& can be any contour wiich is obtained from the contour along the real

axis by deforming it inte the domain of analyticity without passing over &

singutarity. This deBnes the generalized eigenvectors _nv of the self-adjoint

operator ¢ )

Qlzy ==zlz) (4.16)

with complex eigenvalue z. These generalized gigenvectors |z can also be
used in 2 generalized basis vector expansion. This is obtaified from (4.15) by
oEﬁEm the arbitary vestor % c®

4= ?_Nx%v

daum mstead of using the mgm_..mﬁwnn amam vector mﬂﬁmhm_.aa. (4.4c) with
_..nwmne o the generalized sigenvectors %) with x & R, oné can i this case
as well use the generalized basis vector expansion ? Aonv with respect to the
generalized eigenvectors j2) with SEanu Bm@ndﬂﬁm z & L. This womm&_.ﬁd
will be nsed E the ma,ﬁﬂvme; of no.mﬁbm mﬂ:ﬂ 3

H.m W%ﬂsnm on. menmgnm and c». Emm.—. mn.moam

ﬂm Eﬁ aﬁw&, Enbﬂonna that Em noﬁvoﬁnmﬁ cw all vectors o & @ with
respect to a basis sysiem constitute a realization of the space @. A three-
diznenisional vector xin R? i thus realizéd by the sequence.(x;, Xy, X3) of its
rn__npmounnﬁm = = ¢+ x The Sﬁmonnnﬂf of course, depend upon the basiy
§ystem choscn. If one takes another basis system. a :un SB_uabnum om the
uEH& 439%&3% x=e-x | .

" In'a finite-dimensional Jinear scalar ?o&nﬂ. space the 88@0&33 are
finite sequences of complex numbers i.,..m_ In an infinite-dimensiond] space
they are sither infimite dequences =5 _AE = Eeu which Tulfill certain
conditions such as (4.12d") snd (4.13d), or contitraous infinite sequences
@(x) = (x| ¢ ie, functions of a EEE:G% Yarmble x, ﬂ.Ha&.meo.".EE_
additional conditions like (4.12¢) and (4.13¢). :

Assp the three~dimensional case, if one nrﬁ@mm the basis mﬁ.ﬁnp-& the
space, the components of a given vector & nwﬁm« toe. This, if we take m
zdditon to B of (4.3d) another ovnﬂﬁo—, A swﬁw uum Eke m. .».mﬁn&ﬁ
.mwmnn.ﬁn .

l_nmv = oyl a2 nmﬂ .u,o.nt _nu‘.. s Am.d

(Aded)

1.5 Reaiizations of Operators and of Linezar Spaces 19

the same vector ¢ of (4. n& can also be expanded as L

b= M_uv@_ﬁ.v 4_&33

Clmd

(5.2)

here we defired for writing ednvenience! [} = [a>.
uq A wbpm do not ntEEP .F_._nu the components {g; | pu_u Q.N |@) are

(Eqid

&+ (E,|d) HAEH:& . (5.3)
[ a¥

eiﬁ& ; Mw__ww (5.4)

Y

olemn matrices ¢an be added, by adding each of their components, they
‘be multiplied by 2 number by multiplving each component and a scalar
duct between columm matries can be defined a5 by the exprossion lurthest
the: right in Equation (4.11d). With these definitions it is easy to see that
set of column matrices: (i'g>, |k >y i=1,2,3,. . form a
near scalar prodoct space Cf (ef. alsa Problem 1). In the same way the set

JLolumn matrices: of components with respect to .the basis Sysiem
) By = KBS L), the (B, | 8). (B0, (B, 1) - mon_“__..m..ehnﬁmnﬁﬁ
duoct space ﬁﬁ..v Itis easy to see that ﬁmi and .(.3 arc isomorphic 1o sach
er and isomorphic 3 the space @: :

(K @3) s ((B) 80—~ ¢
AH__H\VVIAEL&V .

- Therewith we can define the spacs @ by spedifying the set ofall EuEﬁn
olumn matricss. For instance we shall define ﬁm,_, g5 the space of &Il (E_ 1)
b fulfill (4.13d) withE, = (z+ $,n=10, 1.2/, .. . ®can then be defined
he space isomorphic to it.? Thus the same vector can w& Han_ﬂnuqﬁ& by
ntirely different column martrices. -

When vectors are realized by column matrices, oeﬁﬂoﬂ are realized by
ﬁmﬂmﬂeﬂmﬁoaﬂ We obtain these matricss of an oH..anEcp. Bin ﬁw_a wa—_nﬂuﬂm

4

‘Caleulate

Bp = M B (3.5)

# €% hasa natural topelogical structive which @ then inheriss, @ i§ then the lirges: space
s.wrnwnb the operatars A% p = 0, 1, 2. . . are continuoas operators, and ifs topologizal strue-
7e Golld beve been defined by this requirement
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and take the scalar produet of this squation with. fe)

| BES = M ﬁ._m_.mvﬁ_av. (5.6)
"This can be written In matrix notation as
CLIBH S_m:v ﬁ_m_wv Q B3\ KD
{2|Bdy) _ .m_”ﬂv... (5.7)
Gy Am_m:v Am_mﬁv Am__..ﬁv.
PN T g £

The right-hand side of (5.6) gives the definition of multiplication of & quad-
ratic matrix with the column marrix on the right-hand side of (5.7). Thus we
see that the E._?r operator B is realized by the infinite matrix

: K1BILY <11BI2y -
(2|81 .Amfm_mv , 58)
GBIy

B A_._w_.___.v =]

which is nmhﬁ _..wn matrix 2. Eﬁ. owﬂmﬁn m with Hnmmnﬂ t0 Gaucumﬁ system
{Dl=1L2%3.00 . 2z g

Now, letDbhea second oﬂ..ﬂw_.oﬂ u.ua wmﬁq b + B 8 H?w wm&m vector _Hv.
using G nﬁ_ :

Awl..bv_,v -1m_“v+b_wv % ) :
Taking Em scalar product of Both maam 9« mum n@cm.ﬂ_uﬁ ..Sﬁ. z“ﬁ cﬁ_m vector

Gv nun o_uSEv ﬂdwﬁmﬁmhvi T .|

=

.Qa+ga ¢a$+oba s9)

Thus the matrix of the sum of two- linear, operators is equal to the sum
of the matrices, as defined by the UME.:E& side of (5.9). Let us now con-
sider the matrix element of n:w mHE. use (he Hmmo?con of Ea._ngcﬁw (4.94)
for Em,amﬂmmwﬁg (3.1) o B e =i o

5 G.HS

: - .Q.bw:vfMG_c_aX;_Ehv s

=4, - ____Ha I ot

Written in matrix nusuou this has En monn. p et .o

FC1|DB|1Y X11DBI2Y <LIDE{3) -
@IDBIT3 (2DBI2" DB -

aE

| C o [SUBIL =)
DLy KLDIZy QHDIS: =\ fogimay ¢21BI2y -
=|Q2Ip|1y QD2 QP < Weams GBI

1.5 Reslizations of Qwﬂ.m.nnnq_ and of Linszar Spaces 21

here the right-hand side of (5.10) gives the definition of the multiplication

{ twa (infmite-~dimensional) quadratic matrices.

Thus in the reslizaticn of the space '® by the space of nc_cﬂﬁ vectors, the

perators arerealized by matrices in such 2 way thatthe sum of two operators -
rresponds to the sum of their matrices‘and the product of two ouaamdoﬂm

cﬂﬁ@oumm ¢ the product of their matrices.

&.sﬁ basis system is chosen to be 2 system of slgenvectors ow the onnum.ﬂou

asin (5.1), then the matrix of A with ﬁﬁnﬁ to this basis system is diagonal

mnoE {5.1) follows

G_..»_Hv = Pc_b = 5,5, ﬁ..:u

oz, written asa mateix, g
(LA (LpA12y CLA13) -\ Jg; O 0 0 O

L2 A1y 214125 {0 a 0D 0 ) sy
QAL - 0 0 a 0 0 -

By) = M [ GEDY; (5.12)
= 4 IE) ,Am _“v (5129
= .:!._F .

NWE_M_ the wnm_mn@moa:n‘ of ﬂ?m equation S:w @ and then ﬁm.WEm the ooEﬁ_mH
Ecmm;w one eqﬁﬁm

oﬂgﬂmas@&

i=]

(513)
us (E, |7 are the matrix elements of a matrix GB wransforms the infinite-
lumn mawmix (5.4) into the infinite-column matrix (5.3). [t is called the
trafisition matrix (or transformation matrix) betwesn the two basis gvstems
__v_wlﬂ 2. and {[E)[n=1,2 .} Its clements (E,|i> are also called
MEman nommean. Hﬁaﬁm Ea. soalar ?da:ﬂ of (5.12") with |j> nq.:.am

Gliy=dy= 3 95@5 ME:KE; (5.14)
. TR o B SR
imilaily one obtains - w -
ElEp) = By = 3 (EulDVIE,) = Wu (EaliMED* (514

Joy
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. A matrix whose matrix elements fulfill the condition. {5.14) is nmcm& a
unitary malriz If the matrix elements are also real, éwmn&. happens sometimes
in ©® (and always in a real lingar space). then the matrix is mmu_o& .onﬁommn&.

It the matrix slements of the operator 4 in the basis _.m.._u are given,.
(E,|A|E,), then one can obtain the matrix clements Gl4li> by using the
transformation (3.127): et e

_ﬁh _8 . : ._.. . . .
a by =CilA = Y L GIEXENAIENEL- (19
‘ A=lm=1 { .
One save, the transition matrix transforms the MALTX .ﬁma_h_mu.u into wm.
diagonal form. Multiplying both sides of (5.15) by ¢E,|i), somuming aver i
and using (5. 7.5 ong o_uﬁw_nm“
3 (ENAIEHEA> = afE |5 (5.16)
m=1 5
If the eigenvalues a, are unknown, then this is the .n.rmﬁu«..&dm w.BEQ.B in
matrix notaticn. For the case that the space is NV .&Bﬂﬁouw_ H..H.umﬂaw% of
co-dimensional) this is a system of A linear bomogensous syuatons: for
the N upknown (E, |3

N R ey [ y g o= 4 : h}_
T B A E)— b u)(Erli> = 0. = (817
me=1 " .
1t has nonzero solutions for (B, 1T mww_n only if
detl(E,|4 __.wau,l @0p] = (5.1%)

The cigenvalues of the matrix (E,TA|E,) are the N solutions of

polvnomial of degree N and, by a famons theorem "of algebra,'® every
polynomial of degree N has N (in general
then real) solutions. s T L

We now turn to the case that one of the basis'systemms,

o

flxp| —om < x < 0}, -

is g@mcg H.amu the vector & is realized by 2 function of a ooEEﬂoh_m_m

5.3)and (

variable x, rather than by a [unction of a diserele ..ﬁnm.zn asin(

e ixldy = ¢

in the discrete case, the space ® Gan be defined by ‘.rm isomorphism
(5.20) % 2 space of functions. We want to consider the particular case where
@ is the space of vectors whose components {x|¢) are elements of the fung-

ticn space 5.

10 She g, A bn_h_noi.ﬂ ﬁmv.ms.

this
equation. These solutions are not necesgarily distinct, Equation (5.18)isa

complex but if 4 s Hermitian

(519

(5.20)

1.5 Realizations of Operators and:of Lincar Spaces 23

The eigenvector |E,) is a particular vector of the space @] so one can use
he centinuous basis system expansion (4.4¢) for it - ) i

18 = [nlw<xiED G21)
The {x'£,) are the analogue of the transilion matrix clements ¢i|E,)
tween two discrete basis systems. They are the iransition coefficients
stwesn (he discrete basds system | E,) and the continuous basis sustem |xD.
For fixed value of x the (x[E,> are functions of the discrete variable £,
ad for fixed vaiue of E, they-are functions-of the continucus variable x.
They alse oceur if ong takes the scalar product of the basis vector expansion
(4.4d) with the continueus basis veotor |x):

(xlgpy = 3 (=IEXE,]16).

e

(322)

& (x| E,) constitute a particwlar et of functions in the space S, which, as
consequence of {4.3d), have the property: : w

(x| H|Ey) = Bilx| By (523)

Because of this property they are called sigenfunctions of the operator H.
uation (522), which is an immediaté consequence of 'the eigenvector
expansion (4.44), is called the eigenfunction expansion of the function
We want to illustrate this on 2 well-known example. We choose for the
space of functions the subspase Kig) = § of all functions ‘¢(x) = (xl@d
hich are identically zero outside the domain x| < &

Let the operator (2 have the continuous spectrum {x| -4 <x < <3} So

spectral reprosentarion of an arbitrary vector g e @ is

- = ._. dx x|, (5.24)
Let the self-adjoint operator i = P2 be defined by
: T
x| H|g) = == {xle) (5.25)

T every compongnt <x| @) of eny ¢ = ©. In order that @, P and any power
f these operators be defined in ®, the space of components (x|#) must be
¢ space of continuous mfinitely differentiable functions for which

’ .ms =, ; u 2 .
k mwmm Ak_%vm. .non.

urther

Grmalp) = Cx < —alg) =0, (526)
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4 T Mathematicel Prekz =

{This boundary condition is important to establish the self-adjointness of i, e coordinates of the vectar ¢ are given by:

cf, Problam 14) Let the sigenvestor of H be denoted by |mp:
H|pp = E,|n). _. (5.27)

We want to find all eigenvalucs E, and the transition coefficients {x[n).
From G 25) and (3.27) follaws

PO }
el =l = | dx Gnlesdxled

“_. .—...T_n . ﬁuﬂqﬂ w
= die sin| — 2 1) n=2,4,6..
doda g |

- im Q_W_u = E4x! e (528)

The solutions of this differential ﬂﬂmﬂou é?ob FEH— the _uoﬁaﬁ.w condi-
tion (5.26) are.

aa, = (nigy = % i (njxy{x 63 '

1 “ta nT

= ..H 1. dx nomﬁma Hva..mxu.“ n=1,3525.

iRy = d\m mnma .x.v Romeees L 238 sy (5.29) quation (5.33) is celled a Fourier series representation of the arbitraty

1 o b HER, metion @(x) € K(a). The coordinates of the vector ¢ with H_mmvou.ﬂ to the

Cxlny = lﬂ Am.i au forn=72.4,6,. asiy system |n3, o, and b, are ¢alled the Fourier cosflicients of the function
) a =4 o . . v = {x|¢> Because (3.22) is just a generalization of a classical Fourier )

The elgenvalnes are i - ies [5.33) one also calls (5. wuu and even (4:4d) often a Fourier series
nfm* (5.50) ¢prssentation or Fourer expansion. In general the eigenfunctions {x|E.)

¥ E,= da= = I 110t be trigonometric functions, however (3:32) must always be fulfilled,

he x| E ) always form an orthogonal system of basis functions. Well-
own examples of arthogonal basis functions are the Hermite Pelynomials,
he Legendre Polynomials, and the Lagusrre Polynomials. To particular,
“the space §, when the spectrom of @ is the entirereal line 3, the Hermite
olynomials arc an approprizte choice of wmﬂm ?ﬂnﬁoﬁw

Sé'far we have consideréd tranmsition coefficients between two discrete
_u systemms (LB, mun the transition coefficients Au 1ED aﬁéaou adiscrete

HxnmoEEmﬁnoﬂmmﬁoﬂ ?.dnm Qauwpwvnnu mwoﬁn m.oEBA:._avnr
which w_u_uoapuq to ? 24)1a m:_nu by £

An :v &n Aa_xv,Ax_zv

_.__ __._ vnammunvl (531¢)

or

B basider transition cosfficients vﬁsmmu two tontinuous basis systems. We
- 1w \ o _ . ose for ® the space redlized by S and congider the operator P definsd by
=~ | dxsin|="=x|sn|=— L =1, 3.310) H...H.owﬁﬂ 7
.Ax_xv 2l uﬁﬁmﬁ HV ﬁm.n ) {:

In &m Tast me._&ﬁ.m.. of (5.31¢) and (5.310) properties of integrals over the
trigonometric funetions have been used. For o' s one should have as 2
noumﬁ_.ﬁﬁoa of the orthogonality of ern,qon.roa of self-adjoint aperarors

PGy =12 (i) forevry 50, e, (<I$ES (5349

H

+a

ity = [ dn cwlxdgelmd =0 b= _ Plo> = plp>. (5.35)
wﬁﬂ Eum can m_mo be obtzined by Hwnﬂﬁm (5.29) EE (5.32) and.caloulating uation (5.34) then mev ’
the integrals over the trigonomewic functions. Because of (5.32), one says | P s & 536
that the eigenfunctions {7 _wv and {n|x}y are orthogonal. x| Ple> = Rx ﬂv i &“ A 128 (3-36)

Thegigenfunction expansion (5.22)fok 9.; particular case is Em well knowa that this n&ongﬁﬁ_ nﬁEEon P En muw noEﬁ_ﬁ

alne om p gven by :

o T '
oy == ¥ n,nomh__au_4 5 @ETHV e 13l <a
x| & Ama j %z il

i=1,2.5 LY Em 45

I.mWﬂ peC. i _u.md

o
2]

H(x) =0 fof - ix| =0. - (5.33)
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Nome of these solutions, however, is square integrable so that |pyg @
(cf. Problem 9).
We can expand any ¢ € ® with respect to The basis system | p) of eigen-
vectors of P:
= dp (PP,
Spean F : .
where the integral has to extend over the spectrnn of the operatar P. We
want 1o determine the spectrum of P. It is contzined in the set of generalized
eigenvalues which is identical with all of C. We take _.bw scalar product’® of
(3.38) with | x>
QE.V = ; &... {eippieler = —= {5.39)
. . Hm.‘.. B
_.Emn inesgration in (5.39) extends over EL.E.H ling, —e2 < p < + B_Emu
(5.39) says that ¢(x) ~.(x|¢y is the Fourier transform of the function
Sip) =<pled We 5@8?2 want to %ﬁ. a E.ﬁ. review of the mﬁnﬁﬁénm of .
the Fourier transform.*?
Let () bean glement of the space .m. then the ﬁEA.,Q..m& Hﬂoﬁ:ﬂ ﬂ.nm.monau_w
ﬁwﬁw we, denote by Fy. H_”axwd @(p), is defined. by -

HE&T%T. 1-7%%5&@

x.u..n...t

% e pled,

m.vaanq P

(5:40a)

dum Fourier transform bas the wo:naﬁnq properties:

.z} F~1maps§ onto Hﬁnm that means nw_cuv wwo c&onéu
.- ol p.tothespace 5. .
_E,_ ‘The Fourier trapsform which we denote by »nu_wwﬁﬁ_ and which is
nmmunn_ by —_—

B(x) = u?xnﬁ _

as a function

: _ % Eﬁs (5406}

N._”
also helongs to the space § if aw@u es.

(c)
CEr S m . v 30 = ( % E%gg = PR (3400)
. _ .(,\q..n g
. for any power n = 0, L, 2, 3,..., which we also write as
ﬁ J LB = F LPE@

13 Secfion L& mooHEn 6. .

1% Eor the proofs and dzrails sex L M. Gelfand er al (1964), Yol 2 Chapter 111, or E .
Beltrami and M. B Wohlers; Distributions and the mnxann_a Vidues of Analyric Funstions,
.f.bnﬂEn Press, Wew York, Gmm

+ Ome yometimes calls inverse: Fouricr gu&o«ﬂ what we exll Fonrier transform here and
vice versa: we may do the same,

1.5 Realizations of Operators and of Linear Spaces 27

: A.L.mu i s [ anxe 00 = Fyilegt)] (5.409)

idp P00,
‘for any power z = 0, 1,2, 3, ..., which we also write as
_ CoLdNT E
ﬁ- i F; {[6G0] = F7 900,

_en VB = L?m P (5.40¢)

where (p), ¢(p) £ § aze the ﬁonﬁ.vn transforms of p(x), $(x) =8

E.. the Fourier transform F and its inverse 71 establish two retiprocal
orphisms between the Schwartz space functions S, of the variable x
En Schwartz space functions 8, of the variable p.

e'can now return to the EoEmE of the spectrum of . As aqﬁw {x'gr=

T :u g & can wa written according to. (3.40b) and (5.37) in the form (5.39)
- th the integration’ extending ‘over the real axis —co <p < +on with

mﬁqﬂwi%_ —oo < p <ok

the real axs R. H&ﬁw we have mc:nn_ 1he mﬁnnﬂ.m._ Rm_u_huou mu umu of G
respect to the basis svstem of eigenvectors of P:The spectrum of P is
Sntinuous and the [p3 are peneralized cigenvectors (not elements of @)
& transition coefficients berween the generalized. Basis systems {[x)} and
o P} are given by (5.37) with p € Rand x ¢ R. For fixed value of x they are
Hunctions of the continuous variable p, and for fixed value of p they are
ctions of the continuous variable x. They satisfy the differential equation
G,wmuu but they are not well<behaved functions, L e, elements of the function
e 8. Therefore they are called generalized eigenfuncrions ¢r distributions.
I is easily seen by exchanging xand pin the m.ﬁua&um arguments and using
40a) in place of (3.40b} that

: e ",
27
oumﬁwmuaw we Have shown that for this mﬁﬁm_ ﬁma of transition co-

efficients berween two ‘continuous. basis mwmaﬁ.m the following relation holds:

Aixv i Au ) o (5:42)

The expomential functon is just one EEEn of transition coefficients
gg two continucus basis systems. Other examples that we will mest in
“second part of the bock are the spherical Bessel fuiictions.

Finally, in this section we want to consider muﬁ nﬂ_ﬁwncn of cﬂﬂmanm i
terms of a continnous basis system. Tkis is again done inanalogy 1o the

{plxy =

(3.41)
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discrete case, To obrain the anslogue of (5.5) we apply the aperater £ 1o the
continucus basis system expansion (4.4c)

- T« Bl (el 8- (543)

Taking the scalar m..._.caﬁnz.m ﬁ:.r the basis vestor _wv e w <% < oo
we obtain

CyiBey="| dx (y|Blxx<xie) | (5:44)

which i the continnows analogue of (5.6). This is an integral transiorm
transforming the lincdon {x|¢) into the function (y|w) = {y|Bg). The
continuous analague of the matrix element (5.8), <y|B|x), is called the

kernel of the integral-trazsform. Cheosing for B = 4-and for ¢ = i), the
m_wona.onﬂou G 1) of A we obtain from (5 ﬁu -
_ e Lyl Almpxliy = aiyl, (5:45)

This is the analogné of (5.1 9. u:&o Rmoﬁ.&uﬁ & EE &m&mﬁ.&onm Lyl
are unkpdwen thisis.a __Euucmnuaocm mtepral squation for the aaﬁgﬂpnoh
of thege values.

1.6 Hermite mun@:an:u,_w as an. HHNBE» am .
OEE..E.E& wmm_mmﬁnnoum _ LT

We start ﬂd& Ea. cﬂﬁ.ﬁcn m Hﬁpgna ¢< En B&ﬂutﬁﬁon operator and
the operator P realized. 3 En a_.m.onnnu.& ovnam.hon Qwﬁcm.ﬁ_aﬁ (5.34))on the
w@m.nn Ewuhnno Fions v

Ax m_ﬁ/laAH_ﬁv,. e .fuona,ﬁ.ron. mm.S
Aa_w_ﬁvlrd.mm a_vu Ax_evmm B (o
.}bo&p.nw gperator H is defined by
H =3(P* + 0%, 6.3)
and its. Emmnqﬂnbnm are mﬂuoﬁn& .3. _a”_
e . __ Ea Emh . . .- (6.4)

We: amnoﬁ Em space in which @, P, H aud any element of the algsbra
mﬂumsnan by ﬁunﬂwﬂg‘e gﬁnm .u mQ#AH_ev m.

S Section L4, H.SBoS G ] ;

** Uue o alsc constroct @i the Hohqiﬁm mAnEs ﬁﬁ. gﬂﬁg mn_..n m.oB the algebiea
af P, O, and  which fulfills in'4ddition 1o (6.3) the relation PQ — QP = (10}, dnd
nobmn._._ﬁ Eﬂmﬂwﬁeﬂwﬁu lnrgestpacein which thiz w_mnwﬂum Ziven (represeated) um.ﬁwﬂﬁ&ﬂ..
of hSnnBaoau operators and in which Thers &xists ar least one sigenvector of H. ;
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o discreteness of the spectrum of H, which iz implied by (6.4, is in fact
2 CODSEqUEnCS of the. mmmrBung that the eigenvectors |n) of H lie in the
ace O oF that (¥ |a) £.8, aswill be shown below,

& trangition coefficients between the (-eigenvectors and the H-eigen-
veetors, {x|n), are orthonormal basia functions of the space § in'the sense of
.22). We want to determine {xin) and the eigenvalues I, explicily.

d«n nﬁﬁ_ I

Y, a.a

A _n.mm
(6.5)
Thus we have to find the solutions .
)= <xin) (6.7)
the differential equation : . .
YE) + (A~ W) = (6.8)

i addition. wewill demand that the W(x) & §. Then they must in partcular
1fill the ggnﬁu nou&ﬁonm. :

(69

Equation (6.8) is highly singdlar af |x' — o and for large values of |%]
s given approximately by v — X% = 0, which has the solutions ¥ ~ ¢=% ik
Oné¢ therefore makes the ansatz

Wix) =0 mmﬂﬂ. than E& v&wsoﬁz& oH, iixass— £t

Yx) = e PP yx) = gy 0y,(x) (6:40)
; y y, and y expanded as power series in x:
= M (6.11)

k=D

\.ﬂa mooonm term in ﬁm HS ifigreases rapidly and cannet Tead to an efement of
herefore ca B.cmﬁ be zere, Inserting .

W) = e 00 (©.12)
HEH_ a ) one obrains the: &mﬂ«ua& equation
~ 2y = (A =1y =0. . (613)
cﬁ:zgm nm ﬁv Eno ﬁm wbv and ooﬁmndbq woﬂﬁm of x pne obtains
: $+m§1cp,"tl.§+?|hs.:o
which leads 2o the recurrence formula
iz = & Mm.w Iwwu. ..mm.pn_.v
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"This determines the coefficients of the higher powers in (6.11) from those
of the lower powers. By comparing the ratio gy, ,/a, for large values of k
with the retios by.a/b, in 2 powsr series expansion of £, we can show that
the function (6.11) with (6.14) will be divergent like & as X — oo, Thus,
the only way that we can construct soluticns y(x) of the form (£.12) which
converge in the desireg manner at' < o0 13 to choose values for 4 such that the
series (6.11) terminates, This we can accomplish by letting A —1=2nfor
n=101,3,...,and we thus see that y(x) can be an element of S only if

=241 or E,=n+d  n=01L2.... (6.15)

The solutions of the ‘differential squation (6.13) corresponding 1o the

eivenvalues (6.13) are also labelled by n and denoted by ¥x) = H,(x). Thus,

we Gblain a family of equations

B —2xH, + 2H, =0, n=012.., (6.18)

which are called the Hermite differsntia) equations. Their solutions H,(x}

are called the Hermite polynomials. It is easy to check that the polynomials
defined by

nu-.-__

H )= (=0 2™ D
FulfiTl (6.16). Bquation (6.17) is called the Rodrigues formula for the Hermite
polynomials. TR RS . .
Thercwith we have found for the transition. coefficient (6.7):
Cxlmy = 9,00 = e TR - (6.18)

n

The factor N, will be nwoan._.u. so that

g
No

(njn) = -_.non (n|xd4x n) =

The orthogonality of the eigenvestors of the self-adjoint operator H can

now be written'in the form . _

NXN (o |n) = ,_..mu.n e P H, Hkvms.?u =0 for n#H#, {6.20}

The second équality of (6.20), which we obtained as a consequence of the

i .Tam-mm, WEG =1 (619

@_.& R

.r.mm_..:_)\m

¢ LPH (x) (6.22)

Appendix to Section 1.6

The normalization facter N, in (6.19) s calculated in the following way: We
nsider the fanction () =& "*2* Considered as a function of the
mplex variable 1, f{7) is an entire function and can be expandad into a
aylor series of 2 .

mim...n.hwu M.aaa@&% forall [i] <o, - - (A1)

here the expansion coefficients depend upon the parameter x. These
flicients are given by PR w oo i

_ L dfi)
4 = nl dtr-

& (AL
i d =] a HK|D
As f(t) is an analytic function for every value of the parameter x we can nse
¢ Cauchy theorem which states that. - o e

TW a2 ;1@ .
d  Zmi J(z—1r 8 & . 3)

heze the integration is along a conrour encloging the point z = i
ration k point z = I, Applying
his 1o f(z) = e = T and using (A.2) we obtain at t = 0

g - 1 mluu+M|eH )

H.. e VT dz. (A9)

Ou the other hand, we can use (A.3) for the function 7(z) = ¢~ and

& . MY e
& T A9

=

orthogonality of the |n), is ealled the orthogonality relation for the Hermite
" polynomials. The normalization factor N, has to be calculated using the
special propertics of the Hermite polynomials defined by (6.17). This is done
using-siandard methiods in the Appendix to this section. From (A.12) one
obtains

rﬂogmncuﬂocwammnﬁﬁuagﬁnﬁm&ﬁnuoﬁﬂu_u.unﬁ.anw,ﬂhawﬁ
particular any point on the real axis. L

- On the lefi-hand side of (A.5) we use (6.17). On the right-hand side we
; = erform a change of integration variable z = x — {, dz = —di. Then (4.5)
[N [* = \/mnl 2% = (621 oes OVer into L : SRS
N, and therawith the rransition coefficients {x|n) in (6.16) are cniy deter-
mined up to & phase facor, i, 2 factor 2@ of modulus one, which cun still

nl 1 e

«.-Wﬁlc.mhg_ = =i
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where the contour of integration etcloses the point ¢ = Q. Dividing both

. ..mnﬂm. powers of t".one ownﬂnm_.
gides by e™*(—1)" one obtains e

CiH (x) = Hopy () + nH,_ () (A13)

This recurrence relation can be used to E.HERo the Hermite polypomials
ep by step starting from Hg(x) = 1. H,(x) =

-In Chaptér II we will also need some muaomon:w of the Fourier transionms
f the H,(x) which are easily derived from the generating function. Multi-

Hiw =22 §8 Ty (A7)

2= A

Cosparison of (A4) and (A7) shows that the cocfficients in (A.1) are given
P 5

1
P.n..a.hu = lmﬂmaﬁhv e "
. ab e Rl L e ‘_ gt gy M 1. (e
and (A.1) can be written . 2 Vo ;
; 1 _ . .
Lt = ¢ far i< oo, AR
& W_U — FE ot | [A8)

o]

_.__ ETERR ) dx. (A4

il
b4
e

B
It
o>

g integral on the Hnm..r.mhm side is oﬁmﬁmﬂna using .z._m subgritiition

The finction () = ¢~ ** s called the generaling function of the Hermite Sx 2t and gives {ef. Problem 11);

polyonomials: Many properties of on_uomonm_ uouuﬂcnﬂm_a are eastly derived
using their generating function.

We are now ready to calculate the nogp_hmnmu factor 2 . Gm_hm {A8)
we cbtain

oF it ._ o= T2 gy dn == mnﬁmunmuxsx..mm P : i .urumw ’
: or-the right-hand side of this squality we use (A.8) with 1 replaced by (i2).
Then we obtain from (A.14):

o - © Loy @ . . .
(.Nﬂn.lﬁu ¥ E B)=Y — *. ) 2T TFH (x)dx (AL16)

el

s oM ]

|- hﬁml.uiﬂnﬂ .Jn+uhn s M,M
o B

dx e H (O (x). (A9)
s!u x:a .
The feft-hand wﬁm omn.rwv can o B weiten ageds I

-

omparing coefficients of identical powers of ¢ we.obtain

e | dxelmitte gt m.h = fn (AL -
o= - |w:m~=C.u = *. dx e e ¥ RH (). (A1)
Expanding mnambﬁo 3 uoaau.mﬂ.ﬁm...onn cgﬁnm WO - 2w~
Joft-hand side Qr& | ﬁw CE
™ = v! (A1l
: P - Continucns Functionals'’

Equating scial voﬁ ers of sand ¢ on apn right-hand m.Em of (A.9) maa {a.ll
one obtaims . ¢, =
oo
dx e %xum (x) =/ Sl 20, (A12
—a
For n £ m c¢oe again oHBE. (6.20). Wannﬁn of the property (6.20) and
(A.12) the H (x) are called oawouﬁq_ﬁ on the interval —w < x < +
with respect to the weight function (/7! 2™ e,
Ow,? important properties obtained from the generatimg Enoaou arethe
recurtence rélations. To obtain the recurrence relation for .the Hermit
polynonaialy we differentiate (A 8) with respect to t: -

the previous sections of this chapter we presented the mathematics of
uantum mechanics as an algebraic structure. Generalized eigenvectors were
troduced by analogy to the basis vectors of a thrée-dimensional space and
was asseried that they could be treated very much like ordinary vectors,
lowever, .E&q ere not vectors of the space O but are in fact continuwous
..Ean_onmwm on’ the space. In this.section we define them and explain their
istinction from ordinary vectors.

Let @ be a complax linear space, A lunctional on @ is a mapping F from
1 space @ into the complex numbers C, F: & — &, (H @ isa real space then

* This seetion can b omitted in first reading, [raives 2 mathematical explanation of aoticns

= 2% xR " = 1 -
M — H (x}t" ~ M I.*.m ARUH: Y= M 3 4._..& ("% ed m Secticns Laand L35 asd is not cwseatial for nH.:hnnﬂEbnEwo_.Ethnoiﬂh chapters
sl N amp B ey (2 — 1) cent for Chapter X3L
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Onc has thus a one-to-ome correspondence between the set of antilinear
functionals on a finitedimensional space and the sequence of numbers
(fypS2s - -0y With thisse numbers one can now define a vector fin @ by

f=% fep. . 7.7

i=1

the mappirg is into the real pumbers RU) It s thus the analog of a complex-
valaed fuaction of a real variable x 5 B F: B — C, orly now the variable i
not a real number but 2 vecior ¢ & & If F satisfies

Floup = Bi) = 2F(@) + FF@) forall hye® and %peC,
_ s . (1)
then Fiscalled an antilinear functional. If F sarisfies
Flag + i) = aF ($) + BF(), o (7.1a) -
thén Fis called g lingar fumetional. (If @ is a real space there is no distinetion -
hetween lingar and antilinear mappings.) We will consider here antilmear
funclionals rather than Jinear ones (note that in the mathematical literature

one usnally.considers linear lunclionals).
An LSHE« UH, an mmnmanﬂ funetional om a wbg.. space is given by

F(g) = 9_., ool i T3
where ¥ is 2 .mxmm element 1y €9 m_bn (¢, W) is the scalar uwoacﬁ of y with
aﬂwﬁoﬁ varies gver 9 (cf. Problem 12). Because of this example and because.

in the general case we want to consider 4 functional fo be a generalization of -
the scalar product, one uses for the antilinear functional F() the symbol

Flg) = {p F BN ()]
Any two antilinedr functionals, ¥y and Fy ona linear mnmnn ®may beadded |
and EE&n:& by numbers according to

Then the right-hand side of {7.6) is the stalar product of the vectors ¢ and
mba we bave shown that in a finite-dimensional linear scalar product space
a? is & one-1o-one corvespondence between the functionals F and the

- ; . Fasf (7.2a)

nnwnum_ the value of the functicnal F{g)at the element ¢f & @ is given by the
Wirsealar product: f

Fd) = (&, . (7.8b)

is shows that in the finite-dimensional cags the muﬁvo__ (7.3) can. &énﬁ
nnunm& ﬁnw the scalar mﬁoa_sﬁﬂ

_ DIF> = (B /). (7.8)
sapnm the identification (7.8) can be Bmun. then @ is said to be selfdual'?

_ex =& {7.84)
mQ. EmEﬂn.n&ﬁngba scalar ﬁqoacﬂ nnmnnm such an. Hamﬁumomﬂg is in

: BE., = aF (&) +BF @), - zfeC 7 {74). o gmnm not possible. As we have already seen that the scalar -product always
(wF; + P $) pmﬁu RF (@) z,fis C. (7.4) s5-4n 40ilinear fmcional w cax: _&hﬂ_ﬂu@ those i Baetions
or, using the no?ﬁou (7.3 : ) _ r, whose values at any ¢-c O can be written as the scalar preduct Fo(d) =
@_&., = BF> = K&wpv + u@_.ﬁv (74 (¢ 1) with a fixed f & @, with the vectors /2 Fj e f. Then we have

O =D, : Tuv

For the E&aﬁﬁmh_.&nq of functicnals on infinite-dimensional spaces
opelogical netions are of great importance. 8¢ far we have only discussed
how algebraic structures are imposed tpon a set, The lingar scalar produst
space defined in Section 1.2, which we want to call ¥ if it has ne other strue-
tare, is a purely algebraic notion. One ¢an now impose upon it a tepological
tructure. Topological structures are defined by giving a specific meaning ¢
he notion of convergence of infinite sequences +?

The Hilhert space convergence of a sequence of vectors ¢, dy, ¢,
pus -~ - 10 THE Voutor @ = # denoted by - : ;

The functional «F, - BF defined by (7.4) is again an antilinear functional
over O (Problem 13). Thus the se of antilinear functionals on 2 linear space *
" & forms a linear space.'® This space is called the conjugate space or dual
space (precisely, the algebraic dual or algebraic conjugate mumo& to the spags’
a_ub.uﬁ.umnoﬂoﬂg ", e
rﬁ P be _Huﬁ.auﬂwﬁmaup_ _&H D = nandlet g, [ = H. 2, ...nbea @mcw

mﬂ @; let F be an. ﬁvﬁuﬂ. antilinear functional on e rmn us ugoﬂn by £
the. oonoﬁﬂn u.uEGn? .

fi= mﬁ _ _r; . (7.3)
155 ?E&oua Fat'an mna:ﬂmﬂ, GED, ¢ = M fus ' can Eﬂ_ be written as

T Fgh= SR 3%51 Serfe .08

i il

$. %9 Rr v, {7109

7 o This identification & not necessary and often it is usciui not to identify the funcricmals
J With elements of @,
Y There are topological spaces for which the definitier of convergence of sequenees s

1ot sufficient fo define the topology, Bat for the spaces @ which we u_ﬁ: consider here _”59
st axlom of countability) this derinition is sufficient

te This i3 hie analog to the stateineat that the'se; of linear operators en-a lincar apace forms
an algebra-lie. , 2 lingar space [ which a multiplication:is defined ). (7.4) _m «.H._n ..naom.s 5« first
two squanons of (3.4), i
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rAsmentioned above, infinite<iimensional linear spaces do not in general
bave the property (7.8d). Howewer, the infimite-dimensional Hilbert space
wmm the [oliowing cemarlable property expressed by the Fréchst-Rissz
orern; Forevery sé-continuous functional £ thers exists an f & 3 which
:En:m? determined, such that

is defined as . _
|y 11_ =0 for v —=® {110)

The D-spaceconvergeqce isdefined with the help of the algebra of operators
and _w Enw&,onn m_ado:annﬂ ﬂnou it, For the algebea generated by P, Q, H

8> 6 forvmsec I CA @) s for 2#° one can make the: ﬁ.wn:mn&_ou (7.8} as _.ca finite-dimensianal ;
| HPig, — $)| =0 Forv Sao oreveryp=0,1,23.... (7.11) pes and obtains from Q ku and 7.13) the triplet of spaces: \
As (7.11) _.bnm_ﬁn_nm (forp = 0 nﬁ.n property (7.10) it is clear that from R F G.H_wq.,‘__

6,36 folows ¢, %0 3.5

llec a Gelfand tripter o7 rigged Hilbert ypace: Thesymbol €[ # Y isthersfore
 sxtension of the scalar product to those F = ®* which are not in 5.

One can now consider antilingar continuous functionals d on D* and
enote the space of all ¢ by ®**. For -a.large class of linear topological
ges @ (called reflexive) there is a natural ene-to-one correspondence
bétwesn a ¢ = @ and ¢ e ®* ¥ given by

O =Fpy =P Es. (7.18)

£ |F) is an extension of (f, @) = (¢, §) we can consider the fanctional
t the vector F = @* as an mﬁnn_ﬁg of the. sealar preduct (f) & It is
erefore convenient to write G(F) = (F|¢y, where F e @™ is now the
able, i.e., (F|¢) is the value-of the functional ¢ on the space ®* at the
or F. With this definftion of {F} ¢, (7.18) reads

Flgr = <2lF (7.18)

ying an extension of the property (2.2b) of the scalar product,

Inorder to define the generalived eigenvectors which appear in thespectral
olution (4.4c) we will have 1o congider the linear operalors on @. We will
nly consider operatars which are conliznous on 9. Tn analogy to the defini-
on of & continuous functional we say that an operator A: @ -» @ is con-
ugus iff for all convergent sequences .

Bt ot vice versa. The cony wﬂmoﬂom ﬁm topology) defined ,S. 211) 15 called
stronger (finer) than the cogvergence (topology) defined by (7.10), and the
convergence defined by (7.10) is called weaker (coarser) than the convergence
defined by (7,11). # is the ....ﬁwnn é,:_ow ooEEa.mE mn_&cob to the elements :
of W all limit &gouﬁ of Z-convergent sequences, © is the space which
comtaing in addition to the elements of ¥ all limit elements of &-convergent
sequences. As because of (7.12) every G,mou,_ﬁ.mnﬁ mappmunm is also -
convergent but Dot vice versa, we have P m ;

® A = A ?_E

The antilinear functionals. that we yill roﬁmﬁ& in the case of nfinite-
dimensional mumnam will always be naugxﬂoﬁ mEndouBm An NEEEBH
Ebnnonm.m 15 co cucbum um bda 5

n_ acosm.. :3 .:53 ? ¥ = 00, (7.14)

where & nnﬂoﬁﬂ comvergence for comiplex urBwﬁm.ua DF #, ere, will
always denote spaces of continuous functionals
We can now nousaﬁ. the set of ognﬁ:crv _EmmH Eboconmﬁ on .% and

op e B .r
D¥ is the mﬂ _u*. m: ._q ® ﬁE the mnoﬁoa that

.. Me@ulm.e@u Enu_._ b, b,
2 is the set of all F* with the Eomﬁé that
F u.@&.lﬂ.%@u forall ¢, %9

The condition fulfilled by F e #* is more Stringent than the non&non
fulfilled w_a. Fe @* hecause according to (7. HH_ there ar¢ more sequences for

éﬁou ﬂP Z ¢ than sequences for which ¢, — % e Therefore
&u T e ¥ =, (7.15)

G b, % follows that, Ad ® Ad.
_ ,

_ﬁ notion of ooEEEQ thus anu@namlES all Sﬂo_oﬁnPuouonmion the
mﬂﬁon of convirgence. An aperator which is a continuous operator with
spect to the O-comvergence need not be a continnous operator with Tespect
he #F-convergence, (Many physical observables cannot be represented
/ continuons om&ﬂoa on the m:cnﬁ space 3 but they, can still be con-
tinucus operators on @)

"Eor every continmous lnear oﬂﬁ.ﬁc_. "A on ® one can defing an. m&oﬁd
rator A* on ©" by

»o?ﬁ&niﬂkﬂa .oﬁb—nﬁm oneou,_.ﬂwgomﬁg_,hnmwal_n,ﬁnﬂﬁ n_a _._.ﬁ ﬁmn!.w aun.
DIUcUS OpeTaters. i < : ;
29 A SereNGE &y, Gt o_.nqmﬁnon,_nqﬂnnﬁopnﬁncnzﬁ_n In_ cqﬁ P a0

(BIATIF) =XASIF). . )
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at the wanmm %, 15 thus the complex conjugate of the value of the functional
xy e @ at the vector & @:1:(x|$) = {¢{x)* Using (7.18), one can also
ay ”amw oy s the vatue of the functional ¢ 2 @ = @ at the veciar
x| ed@”, -

Ome can prove that 4* is a linear continuous Cperalor on @%. This i3 the
exransion of the Hilbert space-adjoint eperator defined by (cf. Section L3):
(¢, A = (43, f) foralge® (7.20)

(which in general is not defined forall f € H) :
1f one has two operators 4 and A with 4 defingd on a subspace of the space

on which A is defined and with the property ¢ = Ad for all ¢ € subspace,.
then one writés 4 = A and calls 4 an extension of the operdior AX Foran

8 How the Mathematical Quantities Will Be Used

conclude this chapter by a table which gives the corraspondences between

operator A on ® which is self-adjoint and has a unique self-adjoint?* exten-  mathematical ohjects § ek
dion A to ¥ one has therefore the following tripiet of operators: " ik wﬁw al objects miraduced in this chapter and the physical gquanti-
_ - o . es which they will represent. To establish, explain, and wtilize this corze-
AcA=dATc 4 (7:21) ondence will be the subject of the followiug chapters of this boak.

on the tripiet of spaces

= @, _ -
& = 3 = B*, Mathematical Image Physica] Quéntity

A lonal I ® is called a gencralized eigsnvector of the operator h.. T
functional Fover © 15 a4 g d eigeny ‘ by n DET 2 or € @ {modulo a phase facter)  pure physical state

on D with cigenvalue o iff P i .
i : S5 ek FaropaiRtor A on @ physical obssrvable
| {ADIF)Y = 8.@._3 for p D, eigeavalues (speolimy of 4 cﬂn& a_wﬁh& in'a measurement of the:
The peneralized sigenvectos F with eigerivalue @ is also denoted ; S obstrvabie A
gen r E _ B sgenvectior [A) ef 4 with cigenvalue 4 state in which measorsment of A ves the
|y = ). ' value I, cigenstate; bound state

o e . , sneralized eigenvector |4) of 4 with i
Amother precise form of writing (7.22) is s 2l nwﬁ_amam_ Clareidanh  sreihy st

A% ey = |, alized eigenvector |w) of A with ~resonznce state wjth resomaiics energy £ and

L . . ) : lex eigenvyalie o3 = £ — 172 width T
which is often just written as scalar product (1] #) with | 4) & @, probability ampliude
Alo>= o)wh S L e ¢
dulias squared 6F it |(Al#) 2 v arobabiiicy 1 ) e i
s . _ . g probabiiity 10 obtain the valie 4
HF e f &2 then (7.22) becomes i 7 measurement of the ohservabie ..m_._wu_w_.m.
NP physical sysiem in the suate

(U6, 1) = (B ATf) = (¢, ) Torall $e,
which for A self-adjoint {as @ is dense in ) is identcal with the definition
of an eigenvector (of. (3.60)): 7

“wave function :

probability ensity for measuring the valde 4
for the observable 4 in the stare ¢ :
onal mateix eleiment or ; .

= 2 L ' i ;::uo_
Af ='wf. (7. ) tation valtie (3, A0) ) Wgwmmw__% H_u_.ﬁ he measurement of 4 14
The dafinition (7.22) of a generalized cigenveator and its generalized sigen- x cletment (i, A¢) - wdisition amplitide -

alie is thus a geaeralization of the defimtion (7.27) of & proper eigenvacto: modulug ¢ £ I R _
X o . . ok i : : quare |(f, A8)[F ‘ransition probability for wansition caused

and its proper eigenvalue. This generalization need not have all the propertie: by A from state ¢ 10 State ¥
of ordinary eigenvectors and eigenvalues. In particular, ¢ in (7.22) need 0
be real even if 4 is (essentially) self-adjoint -

‘The eigenvectors |x) that appear in the contmuous cigenvector exparnsio
arceeneralized eigenveciors in the sense of (7.22). The coardindte {x| $hy=
${x)of the vector ¢ = ® along the basis vector [x), or the value of the functio

._Enﬂm

st T denote the set of all sequences x _N b2 SR
¥ : 3 ] b o = (182 -y Swith = € _.E...Eﬂ. X
E&. Defins addition and multiplication with alementsof C by the Wg_.__»m.

31 A gperitor which is defined on @, is Hermitiag on @ as defined in Section 1.3 aod has
unique seif-adijoint extension w ¥ s called essentigily self-adjoint.
- For operalom the symbol < deis not mean inchasion as for spaces.

.ﬁ.ﬂuu m%-.. oiE muv A n“uf.q —.___N_.” e AL” ‘.-N._. + u.qu.la._m.n L.u“.uuﬂuu- S ﬁ: + \duu-
B, g ey S = (sl 88
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:Snow that the cperators F and @ fulfill the commutation relation:

_._ Eéwuf.

() Show that £7is 2 linear spacé,
B Letx = (&, oo S ¥ =10 ot ) be two dements of TV mvoa?ﬂoﬂv&

defingd by

et e W.o g _Mummﬂ mnﬂmwnumo&ﬁﬂ space with eléments ., x ... Let (83, [ED,
e e i e e e e
2. Tet®oe O of Probiem 1 and let a map A be defined by YL, - ane OF, withvelements (£, 1), (F, [9) B N oo 5 _VHH.HH
P mu.. | | u.oﬁwqmwﬂ @, {x' av. x|y .. areall GoEE..vEr 1o the space © and _.m...uB.n.HmEa to

how that the generalived Fmetion Py = (U /223" i3 a generalized &igens

@y = M,_mz.r.
=1

where
) inenon of the operator defined i Probleot 7:
&= M ..n...aﬁxu
| k=1 . &R, uvﬂ k A..n 7y = pix|ed
whete @y (i k= 1,2,..., n) are fixed numbers. ; fdx
; o  real, but that it is not & well-behaved function, Le. that |p) ¢ @
@ &z gy w shat the polynomials Sefined by
o= Gzr Fax 2y
b e mﬁl,,tﬁn, ?A.v =042 ..
gy Gyz Gy

L the differential squarion.
i3 called the matrix of the me A Ua.mu maon._ﬂ. map B in the same way- Show that
these maps A and B are linear operators on the space. € (e, Fulfill the relations for
lingar operators). Show that the set of operaiors form ap algebra if multiplication amd
addition of their matudses and multiphication of their matsices by 2 Tumber are defined
by the nsual mies for matrx E:?ﬁwnwnou. .
3. ‘Showthargf (aeC,f meu_wnhSmgéﬁE o.E.BoE spertor A Fis an eigen-
vectar of A with eigenvalue i, What is the gigenvalue of the vestor &7 7 -
4. Show that 2 Hermitian c.aﬁmsa m.upm En following properties:

{a) Al eigenvaluesare real n =
{b) Two eigenvestors ¢, and ﬁu of A orthogonal io sach other if the gigenvalues

corpesponding to thent are differsnt from each other. )
5. Shaw that two vectors tp and i are egual i all their SBvonmnﬁ with respect to
basis svstem are equal et s ¢
6 Show that the nmﬁnglwowﬂﬁnruﬁpwuwoﬁﬁ ingguality; .mh_nm.uau 2.7 moﬁoe
from the definition (2.5) of 2 'positive Hermitian form.
7, et 0 be the operator with continuous specinim x| o0 <k < Feo) and K
_wv denoteim mnnmn&ﬁ& Emsuéﬂof Unmun uboES. operator Phy:

] HY = 258, 4 208, = 0.
Calculate the Fourier transform

parayes

B9 = L_H _ dp 528

3!

he fmetion @(7) = "€ § {2 > ).
,.oﬂ thar the scalar prodnct (¢, ) with ¥ & @ fixed and

;) <O variable defin
.=a&. functional F(¢) = (@, ¥) on the space O $ ®

F, and F, be lincar funetions over @, &, § b .
4R defined by e complsx numbers, siow that

A.nm o+ BFN) = oFy(§) + BFo(2)
& @ is again a lineay Mnctonal gver @,
w.. be the operator defined by Equation (5.25) and P the operater dsfined by

ns m._c..vl.lrr (ol forall ge® (F= -1

. ld ., .
- &Py = —— )
+ax

the same requitements for the functons ¢ 1

xld), Show that as a conséquence of
? andé P* are seifadjoint operatory: Are P and P? scif-adjoint

il it 1.

Eﬁpa Him: Use mregration by parts. ! g

ma.nnob L7 it was shown that

(Zy=Show that £ is a linear oparator.
(B): Show that in:order to have the operators.@ and Powell defined, ie, | Pd] an
Q| be fnits for all vactors: ¢ €D, the: components of every. vector x|
mmst Be infinitety differentiable continuous functions which togsther with ther
desivatives vanish ar infinity more rapidly than any polynomial of x (e, {x]42;

must be fonezions of the Sehwartz space 5). He® typroving #* < bF
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and using the Fréchet-Rissz theorem # = 3¢, Give an alternate proof of # = @F
without using A= 3™ by proving the follewing:
(a) Show that from

FL; follows Sx.bi?ﬁ

focallf = 228 m?,: Use the nmﬁ¢41wow&nﬂ|b5§wosa§ inequality. .
{(b) Show that overy f e & defines an clement of F=@” ty Flo) = (4, ) for
svecy @ £ 9. B.g, show that F, which is antilinear by Prablem 12, 1s continuouy.

Hint: Show that from ma H.Q follows m.@,_”_ —+-Fg) .._mmbm nun.hanhﬂ of part (a)

.mn_:m.s_.

‘vhapter, the longest in the book, introdiices three of the basic assump-
o5 5f quantem mechanics and then illustrates them;, using mainly the
ple of the harmomic oscillator: Though some historical remarks are
ded, neither the historical developrient nor any Sther henristic way
wards quantum mechamice is [ollowed. The basic assumptions are
ulated, cxplained, and applied. In Sections IL2, IL 4, the basic assump-
oms are introduced; in Ssctions Y13, IL5, IL7 the harmonic oscillator
d to illustrate them. Section L6 contains the derivations of some general
quences and might be omirted in fivst resding. The discussion for the
tinmous specira, important for the description of the scattering and
decay phenomena in the second part of the boak, is given in Section LS.
reral remarks througheut this chapter emphasize the pasticular problems
Sg@ﬁ& with generalized eigenvalues and cigenvectors and our umified
weatment of continuons and discrete s spectra. In Section 1LY we are ready
mﬂg the physicsl meaning of the quantum-miechapical constanmt of

A Introduoction
e, At , ik .
hwsicists believe that there is something in nature, or in each restricted
omain of if, that may be “understood™; that there I8 @ structure in nature.
0 "understand ™ means to bring this structure into congruence with somic
ructure in our mind, with a structure of thought objects, with a structure
43
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