Phys 402: Final Exam

May 22, 2019

• Write your name and Student ID number in the space provided below and sign.

Name, Last Name:	
ID Number:	
Signature:	

• You have 2 hours and 45 minutes.

• You must show the details of all your work. Illegible and ambiguous explanations and calculations will lead to deductions from your grade.

Problem 1 (10 points) Consider a quantum system consisting of a particle of mass m that is described by the Hilbert space $L^2(\mathbb{R}^3)$ and the Hamiltonian operator: $\hat{H} = \frac{\vec{P}^2}{2m} + \hat{v}(\vec{x})$, where v is a real-valued potential. Let ψ_1 and ψ_2 are solutions of the time-dependent Schrödinger equation for this system, and $\rho := \psi_1^* \psi_2$. Find a vector field $\vec{J} : \mathbb{R}^3 \to \mathbb{R}^3$, that satisfies the continuity equation

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \vec{J} = 0.$$

You need to give the explicit formula for \vec{J} in terms of ψ_1 and ψ_2 .

Problem 2 Let \mathcal{H}_1 and \mathcal{H}_2 be the Hilbert spaces of a pair of quantum systems that realize the spin- s_1 and spin- s_2 representations of the algebra so(3), i.e., we can identity \mathcal{H}_ℓ with the span of $\{|s_\ell, -s_\ell\rangle, |s_\ell, -s_\ell + 1\rangle, \cdots, |s_\ell, s_\ell\rangle\}$, where $|s_\ell, m_\ell\rangle$ are the normalized common eigenvectors of the spin operators \hat{S}^2 and \hat{S}_3 in their spin- s_ℓ representation, $\ell \in \{1, 2\}$, and we use the subscripts 1, 2, and 3 to label the Cartesian coordinates x, y, and z. Suppose that we have a two-particle system where \mathcal{H}_1 and \mathcal{H}_2 represent the Hilbert spaces of the first and second particle, respectively. Let us denote the spin operators acting in \mathcal{H}_ℓ by $\hat{S}_j^{(\ell)}$ and the spin operators for the two-particle system by $\hat{S}_j := \hat{S}_j^{(1)} \otimes \hat{I}^{(2)} + \hat{I}^{(1)} \otimes \hat{S}_j^{(2)}$, where $j \in \{1, 2, 3\}$ and $\hat{I}^{(\ell)}$ is the identity operator acting in \mathcal{H}_ℓ .

2.a (10 points) Show that $[\hat{S}_i, \hat{S}_j] = i\hbar \sum_{k=1}^3 \epsilon_{ijk} \hat{S}_k$ for all $i, j \in \{x, y, z\}$. To get full credit you should show the details of every step of your calculation.

2.b (15 points) Find the eigenvalues of \hat{S}_3 and the corresponding eigenvectors.

2.c (10 points) Find a necessary and sufficient condition on s_1 and s_2 under which at least one of the eigenvalues of \hat{S}_3 is degenerate.

Note: According to the statement of Problem 2a, \hat{S}_j provide a representation of the algebra so(3). This is a unitary representation because \hat{S}_j are Hermitian. If \hat{S}_3 has degenerate eigenvalues, this representation is reducible. Therefore your response to this problem is a sufficient condition for the reducibility of this representation.

Problem 3 Consider the two-particle system of Problem 2 with $s_1 = s_2 = 1/2$. Let $|m_1, m_2\rangle := |s_1, m_1\rangle \otimes |s_2, m_2\rangle$. Then $\mathscr{B} := \{|\frac{1}{2}, \frac{1}{2}\rangle, |\frac{1}{2}, -\frac{1}{2}\rangle, |-\frac{1}{2}, -\frac{1}{2}\rangle, |-\frac{1}{2}, \frac{1}{2}\rangle\}$ is an orthonormal basis of $\mathscr{H}_1 \otimes \mathscr{H}_2$.

3.a (10 points) Construct an operator $\hat{\mathfrak{S}}_+: \mathcal{H}_1 \otimes \mathcal{H}_2 \to \mathcal{H}_1 \otimes \mathcal{H}_2$ with the following properties:

$$\begin{split} \hat{\mathfrak{S}}_{+}|\frac{1}{2},\frac{1}{2}\rangle &= 0, \\ \hat{\mathfrak{S}}_{+}|\frac{1}{2},-\frac{1}{2}\rangle &= \sqrt{2}\,\hbar\,|\frac{1}{2},\frac{1}{2}\rangle, \\ \hat{\mathfrak{S}}_{+}|-\frac{1}{2},-\frac{1}{2}\rangle &= \sqrt{2}\,\hbar\,|\frac{1}{2},-\frac{1}{2}\rangle, \\ \hat{\mathfrak{S}}_{+}|-\frac{1}{2},\frac{1}{2}\rangle &= 0. \end{split}$$

You are asked to express $\hat{\mathfrak{S}}_+$ as a linear combination of $|m_1, m_2\rangle\langle m_1', m_2'|$, with $m_1, m_2, m_1', m_2' \in \{-\frac{1}{2}, \frac{1}{2}\}$.

3.b (10 points) Let

$$|e_1\rangle := |\tfrac{1}{2}, \tfrac{1}{2}\rangle, \qquad |e_2\rangle := |\tfrac{1}{2}, -\tfrac{1}{2}\rangle, \qquad |e_3\rangle := |-\tfrac{1}{2}, -\tfrac{1}{2}\rangle, \qquad |e_4\rangle := |-\tfrac{1}{2}, \tfrac{1}{2}\rangle,$$

so that $\mathscr{B} = \{|e_1\rangle, |e_2\rangle, |e_3\rangle, |e_4\rangle\}$. Find the matrix representation of $\hat{\mathfrak{S}}_+$ in the basis \mathscr{B} , i.e., compute the matrix \mathbf{S}_+ with entries $S_{+ij} := \langle e_i | \hat{\mathfrak{S}}_+ | e_j \rangle$.

3.c (15 points) Let $\hat{\mathfrak{S}}_1 := \frac{1}{2}(\hat{\mathfrak{S}}_+ + \hat{\mathfrak{S}}_+^{\dagger})$, $\hat{\mathfrak{S}}_2 := \frac{1}{2i}(\hat{\mathfrak{S}}_+ - \hat{\mathfrak{S}}_+^{\dagger})$, and $\hat{\mathfrak{S}}_3 := \hat{\mathcal{S}}_3$, where $\hat{\mathcal{S}}_3$ is defined in Problem 2, i.e., $\hat{\mathfrak{S}}_3 = \hat{S}_3^{(1)} \otimes \hat{I}^{(2)} + \hat{I}^{(1)} \otimes \hat{S}_3^{(2)}$. Find the matrix representation of $\hat{\mathfrak{S}}_1$, $\hat{\mathfrak{S}}_2$, and $\hat{\mathfrak{S}}_3$ in the basis \mathscr{B} .

3.d (20 points) Show that $[\hat{\mathfrak{S}}_i, \hat{\mathfrak{S}}_j] = i\hbar \sum_{k=1}^3 \epsilon_{ijk} \hat{\mathfrak{S}}_k$, i.e., $\hat{\mathfrak{S}}_j$ define a representation of so(3) in the Hilbert space $\mathscr{H}_1 \otimes \mathscr{H}_2$. Is this an irreducible representation? Why?

Phys 402: Sol. to Find Exam Problems

Sol. for Problem 1:

$$-\frac{t^{2}}{2m}\nabla^{2}t_{1} + Vt_{1} = i\hbar\frac{3t_{1}}{2t_{1}} = i\hbar\frac{3t_{1}}{2t_{2}}$$

$$-\frac{t^{2}}{2m}\nabla^{2}t_{2} + Vt_{2} = i\hbar\frac{3t_{1}}{2t_{2}}$$

$$= \frac{\partial}{\partial t} S = \frac{\partial}{\partial t} (t_1^{\dagger} t_2) = \frac{\partial}{\partial t} t_2 + t_1^{\dagger} \frac{\partial}{\partial t}^2$$

$$= \frac{i}{t} \left[-\frac{t^2}{2m} \nabla^2 t_1^{\dagger} + V t_1^{\dagger} \right] t_2 + t_1^{\dagger} \left[-\frac{i}{t} \left(-\frac{t^2}{2m} \nabla^2 t_2 + V t_2^{\dagger} \right) \right]$$

$$= \frac{-it}{2m} \left[t_2 \nabla^2 t_1^{\dagger} - t_1^{\dagger} \nabla^2 t_2 \right]$$

$$= -\frac{it}{2m} \left[\nabla \cdot (t_2 \nabla t_1^{\dagger}) - \nabla t_2 \cdot \nabla t_1^{\dagger} \right]$$

$$= -\frac{it}{2m} \left[\nabla \cdot (t_2 \nabla t_1^{\dagger}) - \nabla t_2 \cdot \nabla t_1^{\dagger} \right]$$

$$= -\frac{it}{2m} \left[\nabla \cdot (t_2 \nabla t_1^{\dagger}) - \nabla t_2 \cdot \nabla t_1^{\dagger} \right]$$

Problem #2

$$\begin{split} & [\hat{S}_{i}, \hat{S}_{j}] = [\hat{S}_{i}^{(i)} \otimes \hat{I}^{(i)} + I^{(i)} \otimes \hat{S}_{i}^{(i)}, \hat{S}_{j}^{(i)} \otimes \hat{I}^{(i)} + \hat{I}^{(i)} \otimes \hat{S}_{j}^{(i)}, \hat{S}_{j}^{(i)} \otimes \hat{I}^{(i)}] \\ & = [\hat{S}_{i}^{(i)} \otimes \hat{I}^{(i)}, \hat{S}_{j}^{(i)} \otimes \hat{I}^{(i)}] + [\hat{I}^{(i)} \otimes \hat{S}_{i}^{(i)}, \hat{S}_{j}^{(i)} \otimes \hat{S}_{j}^{(i)}] \\ & = [\hat{S}_{i}^{(i)} \otimes \hat{I}^{(i)}, \hat{I}^{(i)} \otimes \hat{S}_{j}^{(i)}] + [\hat{I}^{(i)} \otimes \hat{S}_{i}^{(i)}, \hat{I}^{(i)} \otimes \hat{S}_{j}^{(i)}] \\ & = [\hat{S}_{i}^{(i)} \otimes \hat{I}^{(i)}, \hat{I}^{(i)} \otimes \hat{S}_{j}^{(i)}] + [\hat{I}^{(i)} \otimes \hat{S}_{i}^{(i)}, \hat{I}^{(i)} \otimes \hat{S}_{j}^{(i)}] \\ & = [\hat{S}_{i}^{(i)} \otimes \hat{S}_{i}^{(i)}] - [\hat{S}_{i}^{(i)} \otimes \hat{S}_{j}^{(i)}] + [\hat{I}^{(i)} \otimes \hat{S}_{i}^{(i)}] + [\hat{I}^{(i)} \otimes \hat{S}_{i}^{(i)}] \\ & = [\hat{S}_{i}^{(i)} \otimes \hat{S}_{i}^{(i)}] - [\hat{S}_{i}^{(i)} \otimes \hat{S}_{j}^{(i)}] + [\hat{I}^{(i)} \otimes \hat{S}_{i}^{(i)}] \\ & = [\hat{S}_{i}^{(i)} \otimes \hat{S}_{i}^{(i)}] - [\hat{S}_{i}^{(i)} \otimes \hat{S}_{i}^{(i)}] + [\hat{I}^{(i)} \otimes \hat{S}_{i}^{(i)}] \\ & = [\hat{S}_{i}^{(i)} \otimes \hat{S}_{i}^{(i)}] - [\hat{S}_{i}^{(i)} \otimes \hat{S}_{i}^{(i)}] + [\hat{I}^{(i)} \otimes \hat{S}_{i}^{(i)}] + [\hat{I}^{(i)} \otimes \hat{S}_{i}^{(i)}] \\ & = [\hat{S}_{i}^{(i)} \otimes \hat{S}_{i}^{(i)}] - [\hat{S}_{i}^{(i)} \otimes \hat{S}_{i}^{(i)}] + [\hat{I}^{(i)} \otimes \hat{S}_{$$

$$= \sum_{n=1}^{3} \epsilon_{ijn} \left(\hat{S}_{n}^{(1)} \otimes \hat{I}^{(1)} + \hat{I}^{(1)} \otimes \hat{S}_{n}^{(2)} \right)$$

2.b)
$$\hat{\mathcal{E}}_{3} = \hat{S}_{3}^{(1)} \otimes \hat{\mathbf{I}}^{(2)} + \hat{\mathbf{I}}^{(1)} \otimes \hat{\mathbf{S}}_{3}^{(2)}$$

Let $1+3 \in \mathcal{H}_{1} \otimes \mathcal{H}_{1}$ be on enjoyeth of $\hat{\mathbf{S}}_{3}$
 $\Rightarrow \exists \forall ij \in \mathbb{C}$, $1+3 = \overline{1}$ $\forall ij \mid 13, m_{i} > \otimes 15_{2}, m_{2i} > \mathbb{C}$
 $\exists \exists \beta \in \mathbb{R}$, $\hat{\mathcal{S}}_{3} \mid 14 > = \beta \mid 14 > \mathbb{C}$
 $\Rightarrow \hat{\mathcal{S}}_{3} = \widehat{\mathbf{I}}_{3} \otimes \widehat{\mathbf{I}$

2.c) $\beta = h(m, + m_2)$ when $m, \in \{2, -S_1, -S_1, +1, --, S_2\}$ $m_2 \in \{2, -S_2, -S_2, +1, --, S_2\}$

clearly $\beta = \pm t (S_1 + S_2)$ an nondegenerate $\beta = \pm t (S_1 + S_2 - 1)$ corresponds to $m_1 = \pm S_1$ $m_2 = \pm (S_2 - 1)$ and $m_2 = \pm S_2$

Then two cases an possible if both Silsz are nonzero. So for sito & sito I & 3 has a defenerate cignicalin.

If $S_1=0$; $m_1=0=1$ $\beta=tm_2$ is nondegenul. If $S_2=0$, $m_2=0=1$ $\beta=tm_1$.

So the necessary and sufficielt on Lithour is that both 5, and Si must be nonzero.

Problem#3:

$$\hat{C}_{t} = \sqrt{2} t_{1} \left(\frac{1}{2}, -\frac{1}{2} \times -\frac{1}{2}, -\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2}, -\frac{1}{2} \right)$$

$$\mathfrak{S}_{+} = \mathbb{E} \langle e_{:1} \hat{\sigma}_{+} | e_{i} \rangle$$

$$3.c$$

$$3.c$$

$$0 0 0 0$$

$$0 1 0 0$$

$$\mathcal{D}_{1} = \frac{1}{2} \left(\mathcal{S}_{+} + \mathcal{S}_{+}^{\dagger} \right) = \frac{1}{\sqrt{2}} \left[\begin{array}{c} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right]$$

$$\mathfrak{F}_{2} = \frac{1}{2i}(S_{+}S_{+}^{t}) = \frac{-i\hbar}{\sqrt{2}} \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}$$

$$\mathfrak{D}_3 = \left[\langle e_{i1} \hat{\mathcal{T}}_3 | e_{i} \rangle \right]$$

$$\sigma_{3}(e_{1}) = \hat{\sigma}_{3}(\frac{1}{2}, \frac{1}{2}) = h_{12}(\frac{1}{2}) = h_{12}(\frac{1}{2}) = h_{12}(\frac{1}{2})$$

$$\hat{\sigma}_{3} | e_{2} \rangle = \hat{\sigma}_{3} | \frac{1}{2} / - \frac{1}{2} \rangle = 0$$

$$\hat{G}_{3}(e_{3}) = \hat{G}_{3}(-\frac{1}{2}, -\frac{1}{2}) = -\frac{1}{2}(-\frac{1}{2}) = -\frac{1}{2}(e_{3})$$

$$\hat{G}_{3}(e_{3}) = \hat{G}_{3}(-\frac{1}{2}, -\frac{1}{2}) = -\frac{1}{2}(e_{3})$$

$$\hat{C}_{3}$$
 $|e_{4}\rangle = \hat{C}_{3}|-\frac{1}{2},\frac{1}{2}\rangle = 0$

$$\exists$$
 \exists
 $\begin{bmatrix}
t & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$
 $= t \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$

This rep. is clearly reducible as the matrix rep. of the Fran block diagonal with 3x3 and 1x1 bloks?

$$\bigoplus_{i=1}^{n} \underbrace{\begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}}_{0}$$

This slows that this is the direct sum.
of a spin-1 and a spin-0 representation.