Phys 402: Final Exam
May 22, 2019

e Write your name and Student ID number in the space provided below and sign.

Name, Last Name:
ID Number:

Signature:

e You have 2 hours and 45 minutes.

e You must show the details of all your work. Illegible and ambiguous explanations and calculations
will lead to deductions from your grade.

Problem 1 (10 points) Consider a quantum system consisting of a particle of mass m that is
described by the Hilbert space L2(R?) and the Hamiltonian operator: H = f—; + 0(Z), where
v is a real-valued potential. Let ¢ and 1)y are solutions of the time-dependent Schrodinger
equation for this system, and p := ¥ftbs. Find a vector field J : R® — R3, that satisfies the
continuity equation

You need to give the explicit formula for J in terms of Y1 and ,.

Problem 2 Let 77 and .74 be the Hilbert spaces of a pair of quantum systems that realize the
spin-s; and spin-s, representations of the algebra so(3), i.e., we can identity 7% with the span
of {|se, —se), |Se, —Se+ 1), -+ ,|Se, S¢) }, where |sp, my) are the normalized common eigenvectors
of the spin operators 52 and S5 in their spin-s; representation, ¢ € {1,2}, and we use the
subscripts 1,2, and 3 to label the Cartesian coordinates z,y, and z. Suppose that we have
a two-particle system where 7 and .75 represent the Hilbert spaces of the first and second
particle, respectively. Let us denote the spin operators acting in .5 by g](g) and the spin
operators for the two-particle system by Sj = 5’3(»1) @I® 4+ 10 g §§2), where j € {1,2,3} and
1@ is the identity operator acting in .77;.

3
2.a (10 points) Show that [SZ,S’]] = ihZeiij’k for all 4,7 € {z,y,z}. To get full credit you

k=1
should show the details of every step of your calculation.

2.b (15 points) Find the eigenvalues of S; and the corresponding eigenvectors.

2.c (10 points) Find a necessary and sufficient condition on s; and sy under which at least one
of the eigenvalues of Sz is degenerate.

Note: According to the statement of Problem 2a, SJ provide a representatlon of the algebra
so(3). This is a unitary representation because S are Hermitian. If Sy has degenerate eigen-
values, this representation is reducible. Therefore your response to this problem is a sufficient
condition for the reducibility of this representation.



Problem 3 Consider the two- particle system of Problem 2 With 31 = s9 = 1/2. Let |my, mg) :=
|s1,m1) ® |2, ms). Then A := {|2, 305 |27 —%>7| _ %’ _%>7 | —
I ® ;.

2, 3 } is an orthonormal basis of

3.a (10 points) Construct an operator 6+ JO R I — F R 5 with the following properties:

&5 =0, Syl3 —3)
6+|_§7_%>:\/§h|%>_%>’ 6+|_%7%>:

You are asked to express & as a linear combination of |my, my) (m), mb|, with my, ms, m}, m} €
{33k
3.b (10 points) Let

lex) =15, 3), le2) =I5, —3), les) = =3, —3), lea) =1 —3,3),

so that Z = {|e1), |ea), |es), les)}. Find the matrix representation of & in the basis 4, i.e.,
compute the matrix S with entries Si;; := (e;|S+|e;).

3.c (15 points) Let &, := %(6+ +6&! ) (‘%2 (GJr S1), and &5 := Ss, where Ss is defined
in Problem 2, i.e. 63 S () & [@ 4 ja ® S5 (2) Find the matrix representation of 61, 62, and
63 in the basis %’.

3
3.d (20 points) Show that [&;,&,] = ihz €16k, i.e., &, define a representation of so(3) in

k=1
the Hilbert space J# ® 5. Is this an irreducible representation? Why?
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