Math 450/586: Quiz # 1 Fall 2009

• Write your name and Student ID number in the space provided below and sign.

Name, Last Name:	
ID Number:	
Signature:	

- You have <u>50 minutes</u>.
- You may use any statement which has been proven in class, except for the cases where you are asked to reproduce the proof of that statement.
- You may ask any question about the quiz within the first 5 minutes. After this time for any question you may want to ask, 5 points will be deduced from your grade (You may or may not get an answer to your question(s).)

- 1. Give the definition of the following objects. (30 points)
- **1.a)** An equivalence class:

1.b) Image of a subset $C \subseteq A$ under a function $f : A \to B$:

- **1.c)** Domain of a function $f : A \rightarrow B$:
- 1.d) A subspace of a vector space:
- 1.e) Span of a subset of a vector space:

1.f) A (vector space) isomorphism:

2. Prove the following statements.

2.a) Let V be a real vector space and U be a subspace of V. If $A \subseteq U$, then $\text{Span}(A) \subseteq U$. (15 points)

2.b) Let Let V and W be vector spaces and $\phi : V \to W$ be a linear map. Then $\operatorname{Ran}(\phi)$ is a subspace of W. (20 points)

3. Let V be the vector space of real polynomials of degree at most 2, and $\phi: V \to V$ be defined by

$$\forall p \in V, \ \forall x \in \mathbb{R}, \quad (\phi p)(x) := xp'(x) - 2p(x),$$

where p' denotes the derivative of p. **3.a)** Find Ker (ϕ) . (15 points)

3.b) Let $\mathscr{B} := \{p_1, p_2, p_3\}$ where for all $x \in \mathbb{R}$, $p_1(x) := 1$, $p_2(x) := x$, $p_3(x) := x^2$. Find the matrix representation of ϕ in the basis \mathscr{B} . (20 points)