Math 450/586: Quiz \# 1

Fall 2009

- Write your name and Student ID number in the space provided below and sign.

Name, Last Name:	
ID Number:	
Signature:	

- You have 50 minutes.
- You may use any statement which has been proven in class, except for the cases where you are asked to reproduce the proof of that statement.
- You may ask any question about the quiz within the first 5 minutes. After this time for any question you may want to ask, 5 points will be deduced from your grade (You may or may not get an answer to your question(s).)

1. Give the definition of the following objects. (30 points)
1.a) An equivalence class:
1.b) Image of a subset $C \subseteq A$ under a function $f: A \rightarrow B$:
1.c) Domain of a function $f: A \rightarrow B$:
1.d) A subspace of a vector space:
1.e) Span of a subset of a vector space:
1.f) A (vector space) isomorphism:
2. Prove the following statements.
2.a) Let V be a real vector space and U be a subspace of V. If $A \subseteq U$, then $\operatorname{Span}(A) \subseteq U . \quad(15$ points $)$
2.b) Let Let V and W be vector spaces and $\phi: V \rightarrow W$ be a linear map. Then $\operatorname{Ran}(\phi)$ is a subspace of W. (20 points)
3. Let V be the vector space of real polynomials of degree at most 2 , and $\phi: V \rightarrow V$ be defined by

$$
\forall p \in V, \forall x \in \mathbb{R}, \quad(\phi p)(x):=x p^{\prime}(x)-2 p(x),
$$

where p^{\prime} denotes the derivative of p.
3.a) Find $\operatorname{Ker}(\phi)$. (15 points)
3.b) Let $\mathscr{B}:=\left\{p_{1}, p_{2}, p_{3}\right\}$ where for all $x \in \mathbb{R}, p_{1}(x):=1, p_{2}(x):=x, p_{3}(x):=x^{2}$. Find the matrix representation of ϕ in the basis $\mathscr{B} . \quad$ (20 points)

