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+10 Introduction

- In ‘quantum mechanics, by definition, the-spin of the above particles
.15 taken 1o be & : .

(though, strictly speaking, for reasons ta become cleir when a systematic
thearetical study of the spinis undertaken, the total spin is [s{s4-1)]* 7).
Thus, 5 can assume only jnteger and haif-integer values &, 1, § 23
in Fig. 3 we have depicted thecase of spin 4. o 5

The experixental arrangement «of Stern and Gerlach can be used as
an. apparatus for a deterrainative niggsurement. of the spin component
in the direction H! In that case the source of particles would originate in
the interaction region, where particles of known spin are interacting.
If a particle of integer spin® sleavesa snark at O, then, by definition, it has
spin zero in the H'direction; the first, second...., (1 — 1)/2 mark above 0
correspond to spin components in the W direction. equal 10 1, 2,
(n - 1)/2, respectively, while the first, second, ..., (s — 1)/2 marks below
O correspond to spin components =1, = 2yey —l— 1) respectively,
In case of a particle of half-integer spin, there will benio widdle mark;

" the first, setond,..., (7 — 1)/2 rnarks above or below O correspond 1o spin

ComMponents &, Iy, (2 — 1)i2, or —%, =y —ln — 1)/2, respectively.
Hente we sec thas according to the very definition of the spin prajection
onto g certain axis, that projection ¢an assurme ordy integer values in case
of integer-spin pariicles, and only half-integer values in case of half«
integer~-spin particles. . :

The zbove experimental arrangement i be easily transformed into
an apparatus for preparatory IMEAsurements of spin by replacing the
_photoplate with & scresn <which has apertures at the spots where a beam
of particles from the given source had left tracks, It has to be mentioned
that no sinultineons Measuraments of spin in two different directions can
be carried out on ruicropartitles—a feature. which is in complete agree-
ment with certain properties (noncommutativity of spin-component
operators) of the formalism of quentum mechanics. SN ‘g

Herc we ead this short survey of some of the experimental procedures
for measuring some-of tie basic observables which oecur in. guantim
‘mechanics, and which will frequently ‘appear in the pages of this book.
In Chapter [ we start our systematic study.of the Hilbert space formalism
-of quantum mechanics, and related mathematies:: .. -~ - -

c Thiy ‘rieams that 3 ‘bears of such particle with random-gricnied spins waould have
25 - 1 tracks on the photoplate. ¢ )

garTER |7

' The wentral object of study in this chapter is the Emﬂ?&?ﬁ%&
‘Hilbert space. The main goal is to givea rigorous analysis of the @BEMH..._.
of expanding 2 vector i a Hilbert space in ferms? of an ortbogonal basi
ontalning & countable infinity of vectors. 5

" We first review in. §la few key thearems oo vector spaces I ma..nnmr
and jn §2 we investigate the basic properuies of vector. spaces on
which.an inoer product 15 defined. In order to define couqn,n.mnnoa.ﬁ an
ner=preduct space, We introduce in §3 the concept o.m metric: In §4 we
give the basic concepts 1od theorems on separable Hilbert spaces, €047
centrating especially on properties of orthonormal bases. We conclude the
chapter by ilustrating some of the physical applications of these mathe-
matical results with:the initial-value problem in wave mechanics.:

. Vector Spaces

1, VeCTOR SPACES OVER TiEns OF SCALARS

A mmathematical apace is in general a set endowed with-some gIVen
structure. Such a structure can be given, for instance, by means of certan
Gperations which are defined on the elements of thatset. These operations
are, then equired to abey certain general Tules, which-are called the
nostulates or the axoms of the mathematical space. :

Definition, 1.1 Any sct ¥ on whica the operations of vector
Jdition and multiplication by a'scalar are defined is said to be a vetor
11




1. Basic Ideas of Hilbert Space Theory

space {or linegr space, or wear manifold). The operation of vector addition

- is g mapping,™
_.‘ﬂ.‘u%uluv\.l_l%."_ -.\..._..hm..ﬁ.nu

‘of ¥ 3 ¥ inte #7, while the n._umqmﬁon of multiplication by a scalar 2

from a field" F isa mapping
{a, F)1= af,

of F 3 ¥ into #. These two vector operations are _.m..n_m_dmnma.ﬁo satisfy
the following axioms for any f, g, k&€ ¥ and any scalars 4, b & F:

(Fg)e? x ¥,

* _“h‘%.”_..m.._u x 7 ﬁu_hm..x\n. ;

(1) [+ g= g+ f(commutativity of vector addition).

2y (S .q”_ i = e (g - ) (associativity of vector addition).

(3) There is a vecior 0, called the zere wector, such that g satisfies
the relation f 4 p o= f if acd on? if g=0.

A elf—g=af e
(8) (e=b&)f = af + &f.
(6) (ab)f = alsf).

nd 1 .x S ﬁ_pn_.d ] nnﬁ.wd.nm ﬁwn ke kg nqaﬁgﬂ in H_ua m,w_.n_l
By following a tagit ooudgﬁca» we denote & Bm&aﬁmﬂn& spacs
constructed from a.set- S by the same letter &, except where ambiguitics
might arise. Thus, ve shall denote by %" the vector space consisting of
set ¥ together with the veczor operations on ¥ alse by #”. & i
When in'a vector space the multiplication by & scalar is defined for
scalars which are elements of the fiddd: F, we say that we az¢ dealing with
8 weetor space over the field F.If the field Fisthe field of rea] or complex
numbers the veetor space is called, respectively, a 7eal or 2 complex vector

.mw.mn.m. b o 2T g

* We reming the readér thar 3 mapzing M of a ser 5 fnto 3 set T s any unambigubus
mile amigning to vach cloment £9f .5 2 single-clement ML) of T% ._.e»._,v. is called the imsge
of £ under the mapping M. Theset 5 in the domain of definition of &, while the sabser
Ty C T of il image pointe M), Ty = [y = (& fe ) s he e of MU T = T,
then we say tha: M s amapping of the set § oxta the set 1)

) _H. b S &, arz sem, Blen §y X - % S, aamoﬁm the mﬁs._w (Eiessi £n) o» ail 1..5.5_3
of a_ngnnﬂ £ E S e £ BT usm in cailed the Cortesion product of the sets 55 ..y S -

1 A Beld is 2 sevon which field operations of sudmzaten and miltipliszHon are n_mmumm_
Le., operations sitisfiing cortain aaoims. We do not give these wxioms because-im the
unnu&.ﬂn are imterested only in two special wellsknown fielgs: the feld of real numbers R
and the field of complex numbers Gt consisting, respectively, of the ser of real murbers g
snd'the set of corplex minbers TF on which the feld operttions aie oziATy SUmImEtos,
and muldplication of nuichers (see Biskhoff and MacLane [1553]).
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“ A an example (see also Exercises 1.1, 1.2, and 1 .3) of a real vector
space consider the family (R™) of one- E_Eﬁn real matrices and define for

ay’ m.m

~vector summation by the mapping

ay + &
(o flra+ B = S,
a, -I- b

_ ae,
@ayoa=| 1 |.
.ﬁh

It is easy to check that Axioms 1-7 jn Definition H 1 are satisfied.

- Analogausly we can define the complex vector space (€) by intro-
ducing in the set C* of pne-column matrices vector operations defined
w..n_pn uﬁv?&.m (L1 EE (1.2), where now « fieC™, and therefore
s By vy by 33 well @ the scalar &, are ooupﬁ_oﬂ numbers.

(1.1)

..,‘..Hwaonnﬁ H 1. ‘mwnr vector. space ¥ has only ooe zérn vector 0,
ind each element f of 4 vector space has one and oply one inverse (—f).

any fe ¥,
(—Lif = (=)

Proof- 'If there are two zero voctors 0y and 0, , they both ru:a to
mwa&w Axiom 3 in Definition .1,
f=f= Gu =f=t, -

for'all f. Hence, by taking f = 0, we get 0; =0, + om , and then by
taking { = 0, we deduce that 0 = 0 oﬂ e c ~ 0y =0;. Now

== A+0 = - If +0f =740
\.Em nrﬁo?nm 1] & = {J, We have e
(= Hf=(-1)f + W =(=1+1f =0/ =0,

o — 0,




_Ec‘_ Hmuaoaﬁa&.EFﬁ_mﬁa.ﬁﬁoq
- -which proves: the existence of an dnverse (—f) = (=1)f for f..This
inverse: (—F) is unique, because if there is another f; € ¥ such that
F+ fi= 0, we have

(—f) = (=F) + 0 =(=) +(f + A = [-) =f1 — A
=(-+f=Ff" QEI.

Definition 1.2. The vectors fi ..., f, are =aid to be linearly inde-
pendent if the reation 5.

e pencn € Fy

Lpfy o n.-..ﬂ« =0,

has gy = =+ = ¢, = 0 as the only solution. A subset § (fivite or infinite)
of a-vector space ¥ is called a set of Unearly independent veciors if -any
finite number of different veetors from §-are linearly independent. The
dimiension of 2 vector space ¥ is the least upper bound (which can be
finite or positive infinite) of the set of all integers v for which there are»
lincarly independént vectars in ¥

1.3, DIMENSION OF A Vecrox Seace -

When the maxinmal nﬁivah_ of linearly Fﬁmﬂ_m@a.ﬂ. vactors in the
vector, space ¥ is finite and equal to #, then by the above definition ¥
is n dimensional: otherwise the dimension of ¥ is + 0, and ¥ is said to
be iofinite dimensional. ] )

Theoresn 1.2. If the vector space ¥ ‘is n-dimensional (n << <-m),
then there is at least one setf; ..., f, of linearly independint vectors, and
each vector f € ¥ can be expanded in‘the form Yo

C..m.u hﬁ.“—NHunH+:.+h-Lﬂ:.

where the cocficients @y ..., 4, (which-are scalars) are uniquely deter-

mined by 1. . SR
Proof. Tf f =0, (1.3) is established by teking &; =

For f = 0, the equation .

=g, w= 0

o+t 4o+ o =0

should have & solution with ¢ 5= 0 due to the assumption that fi ... fu
are linearly independent, while £, fy 1o, fn bave to be linearly dependent
because ¥ is # dimensional, From (1.4) weget . :

F=(—afafy 4 ﬁ.luna____@.m.: 3

{1.4)

(@b fy + - F (e —b)fa=0. S
iinf, are lincarly independent we deduce that @; = & = Oy
, =0, thus proving that @; ,..., @, are uniquely “determised
hen f is given. QE.D. o i v vz X
Defigition 1.3. W say that the (fnite or infinite), set S spans the
vector space ¥ if every vector in ¥ can be written asa linear combination

.\.“ﬁn\uu.l_..“.:l_!ﬁﬁ?u : H—_.vm.n.nFm_W_
of.a finite number of vectors belonging to §; if.S is in addition a get of
lineasly independent vectors, then 5'is called a vector basis'of #T. -
"Theorem 1.3. If theset {g; .- ot 18 winﬁwh basis of ﬂvn@.&ﬂg-
'siopal (# < +0) vector space ¥, then neccssarily m = z.
Froof. As 7 is n-dimensional, there must be = lineasly independent
VEtors fy yuon fr - LE the set {gy yoovy £m) 154 Veetor basis in ¥, we can write

S = engy & o+ G
JESEERR H Gy b G-
if im_&.. __,no satisfy the mnﬂc_k_&cn . _ A .
_ g T+ ffa =0 _
: ﬁm_mﬁ by substitating f1 s fo 10 ( 1.7} ..,_i& the ﬁn..w.nﬁmwonm _E ﬁ._ ..3._
(@ + 1t us.a..umﬁ_._._; e ?Ea_pur +m§abwa HA_UH .
BIMICE G5 5o-ry Ere AT assumed to be linearly mn.mnwnﬂ.“—nﬁ_.n»n ahove me.iﬂmoﬁ
has uﬂmoﬂﬁmop.mn Ky yoeny 2, if and only if v . ‘
B et i i o
aéa_+:.w_.;§uau.o.. .

However, as fy ,..., fa aré also linearly independent, (1.7) or equivalently
(1.8) or {1.9) should have as the only solution the trivial one % = = =
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. %, = 0. Now, m < n because, ¥ iy n- dimegsional and gy, Zn 4Te
Jinearly independent: (see Definition 1.2); therefore, {1.9] has only a
trivial golution if and only if m = ». Q.E.D.

Definition 1.4. A subser'¥; of & vector space % is a vector Subspace
(linear subspace) of ¥ i it is closed under the vector operations, e, if
F4 g =¥, and of € ¥ whenever f, g € ¥, and for any scalar a. A vector
subspace #] of ¥ is suid 0 be nontrinial if it is different from ¥ and
from:the sev il SRy o :

From the very defnition of the dimension of a vector space ¥ we can
conclude that the dimension of a.vector subspace ¥} 0f ¥ cannot exceed

the dimension ._.u_.m. G

1.4. IsoMozpHISM OF VECTOR SPacEs

-

Definition 1.5.- Two vector spaces %, and ¥ over the same field
are fsomorphic if there 35 & crevto-one:mapping ¥ onto %3 which has the
properties that if f, and g, f2, 42 € ¥, , are the images of f; and g,
f; £, & %3 , Tespertively, then for any scalar 4, af; is the image of afy

s B L Rk,
and £y 4 g, s the rﬁumn_om.lm.. + &
. .sw.a Phwi.um..._'h.n.

The importance of the isomorphism. of two vector spaces ¥, and ¥5
lies in the sovious fact that two such spaces have ar identical vector
structure. 1t is ¢asy To see that the relation of isomorphism is transitive
(see Exerciss 1.6), La., if #5 and 7, as wellas ¥% and ¥, are isomorphic;
then 7, anc ¥ are also isomorphic.

“ i ‘ = tee R eI oA

Theorern 1.4. All complex (réal) n-dimensional (n << - cC) vector
spages are isosnorphic to the vector space (C%) [(R*) in case of real veetor
spaces]. eme o 3 | |

Proof. Copsider the case of an m-dimensional ~vettor: space .
According 1o Theorem 1.2 there is a vector basis consisting of # vectors
fi o Jfiy and each vectsr fe ¥ can be expanded in the farm (1.3),
WHEEE &, 5on.y 8y € CF 286 uniquely determined by f. Consequently ;

O ?..
i i e e
i . X . R Ve afirar zhax o !

Y ector Spaces 7 17

mm.w.Bmvﬁ.w._m.om ¥ into, (7). Parthermors, this is a.one-to-vne H_Duﬂ._?bm

"of ¥ onto {C7) because to any L teTah L _ :

= oo B | €T Coe e

: nﬂ.nmuobmw 2 unigue f = by + =+ b, f, suchithat §-= oy - Tt is zlso

gagy to sce that P

g apy =% F %
af v g = Oy - - e .

Gince isomorphisc of vector spaces is % trapsitive relation {see Exercise

_...m,._ we can conclude that &Hﬂ..&Bm.ummou& complex vector. spaces are

. {c. because each of them is isomorphic to Aﬁj QE.D.

m.n%.mmw ity . N IR ...._..‘.... _—
1], Chedk that the set of 2llm > n complex matrices comgtitutes an
. 7 diraensional complex vector space it vector ”.m&&m_mn is ..._..wn.w@_m. a3
being addition of matrices, and multiplication by a dcalat is Bﬁﬂwro&uoﬁ
of-a matrix by 2 complex nuoiber. L : Rpresina Vil
9. Show that the set C of all romplex numbers becomes a two-
&hpwammoﬂww Mm& vector space il vactor addition 1% .&.ﬁumom.ﬂ..ﬂ.wn@aeﬂ of
complex numbéers, and multiplication. by 2. scalar ._Hm,:nm_ﬁﬁwr_.umﬁoﬁ of 2
complex number (the vector)-byia real :ﬁn_om._.. (the mo&.»&.. .

3. Show that the family @o(RY) of all complax-valued. continuons
?.M%Euw W.Mmﬁa%au the R&qcﬁm m.m "wﬂ mnmiﬂ‘&anaﬁﬁﬁ& vector mwmmw.
the veetor surn f + g of f{x), 2(%) € %O(RY) is the function Q...:T %%&ﬁwﬂu
(%) -+ g{x), and the product af . of f(#) m..mmacws with a8 ﬂm &.m

function (af)(x) = af (x). The zexo veetor 13 taken to be ﬁ_u._n. une on
L4, Brove that if o is a family of linear subspaces L of.& vesr
pase ¥ the theis sef intersection (per L s als0 @ yeetor SyBSPRCE T

AT

if §.is ot of a vector space ¥, then.there is
1.5, Show that if S.is any subset of a vector space 7 .,
unigue smallest vector gubspace ¥ CODLAIDING S (called the vector
subspace spanned by 5). . .
1.6. Verify that the _._umﬁnam_ of m_waBo...me@ of vecror spaces 1s:
: ) .| : - ) ' . ’ g .‘ - . . ..— &m- .

2+ reflexdive; 1, cvery: vector space #7 ix isomarphic toawsall; - -

i M,UW_. svmmiete, Le., E¥5 ._w.\.—mcﬁwmnmgnﬁg.%\w . _“_uwﬁ ¥, is isomorphic

e o,
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”,s._._.nuhdﬂ._,. we talk about a Enclidean space, we shall mean a complex
Euclidean space.

- Theorem 2.1. Tn-a Euclidean space &, the inner product {f[g)
atisfies the relations =

(a) " <af | g = a*(fl g

(b)) fHglB = <flR L2 A

The proof is o_uﬁ,_u.n_w by a mﬂﬁmﬁnmonsﬁdﬁ_ Nﬁ—vromnob of Points . J—4
n Definition 2.1: .- . 0o ; ;

$af | gy =g laf>* = [adg | 1" = .a*Q | /2% = a¥*(f _..3
ftgihy =G et =LRID H DI = I +aler
=<{f ky+<gHn

. As.an examaple of a finite-dimensional Euclidean space, we can take

the vector space (C%) defined in the preceding section, in which we
ptroduce as’ the inner produét of the: vectors « “:E _m ...__ﬁﬂw ﬁ_un Er

uﬂ@ﬂﬁgﬁm mand .Fn y

ey rtransitive, i.e., if %5 is.isomorphic to ¥ and ¥ is Bobuog_ﬁn
1o ¥, then #7 Eﬁoﬂ.ﬂﬁgog%‘. =

1.7- Prove that the following subsets of the set €¥RY) (sce Exercise
1.3} ar¢-vector subspaces of the vector space FYRY:

(2) the:set &, of all m..&udoﬂmw_w.ﬂmﬂ_u complex coefficiznts;
{b) the set &, of all'polynomials of at most degreen.

Show that &,

2. Euclidean (Pre-Hilbert) Spaces

2.1.  INNER Propucts on Vecior Spaczs

" A Euclidean. (or pre-Hilbert -or inner product or wmitary) space & is 2
veetor space on which zn inner product is defined. The Euclidean
space is called real or complex if the vector space on which the inner
ﬁuﬂﬂﬁnﬂ i defined is, Hﬂ.ﬁ@ﬂ?&%. real or ncuﬂﬁunﬂ. .

Definition 2.1. An dnner (or sealar) product {- | ».on: _..wo complex
vector space ¥ is @ mapping of the set ¥ X ¥ into the set T% of coraplex
mmmbery tis casy 10 check that the above mappingof (C3) X (C7) into Clsatisfivs
the four requirements of Definition 2.1. We shall denote the above
Euclidean space with the symbol ().

An example of an infinite- dimensional Euclidean space is provided by
he vector space [#5, ()] of all’ reﬁ_uﬁoﬁ noﬁm_pmf:u_ﬁmn_ functions

av.on. the real line which satisfy

(O o Ce¥ %, ety
which satisfies the following requirerncats: _ _

() Fl1fH>=>0,  forall f5#0,

) <flep=<Lelf> . ., : _
(3) f ey =af\|g), eeli _ 3
4 {flg=rm =L+ <{f1B o C o

Note that by inserting [ = g == £ = 0 in Point 4 we get 0 |0y = 0.
Following 2 notation mﬁﬁ. introduced by Dirze [1930] and widely

adopted by physicists, we denote the inner _.uacacﬁ of fand g by {f] h B

Mathematicians often prefer the notation’ _Cn ..3 nn& replace Pomnt 3 in

Um.mn_n_oﬂ 2.] by .

._ 1 (@)i* dx < oo, lim flx) =0,
hich the inner product (see Exetcise .m._w s

¢ ze - ﬂ *E%E oo
.n:ﬁﬁn{ﬂwﬂoru. E.wnﬁwra. i .__ =
Kk QSQ_@

rodf. For maw‘ given f, ¢ € € and any complex number @ we Eﬁ.ﬁ
toperty H in UnmEﬂou 21 mua n_.ﬁ anBBnuﬁ moﬁcssnm “_f

G+£C+£vwo.

(af, &) = aQ &

The above definition can be easily mvmnnhﬁnm to Hﬂm vecltor spaces,
in which. case the inner product (f | £5 is a réal number, and Point 2 of
Definition: 2.1 becomies {f|g> = (g |73 Asin quantum physics we
deal almost excusively with complext Evelidean spaces, we limit ourselves
from now on o the complex case. Consequently, if not otherwise stated,
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In particuler, if we take in the above inequality

e =y El2*

A = ¥

we gasily saow that the inoguality

&N =R H NS+ LI =0

is true for all real values of A. A necessary and sufficient condition that
Z(%) >0 is that the discriminant of the quadratic polynomial g(A) is
not positive C
Ko = 1O =0,

from which the Schwarz~Cauchy inequality follows imrmoediazely. Q.E.D.

22, Taez Coxcrer or Nomm

The famity of all Butlidean spaccs is obviously contained __.h the family
of vector spaces. There is another Family of vector spaces with.special

_ properties which is of great iroportance in mathematics: the family of

normed spaces.

Definition 2.2

A 'mapping
S=1F Fe¥,  |flsR,

of z complex vector space ¥ into the set of real numbers is called a norm
if it satisfics the following tonditions:

(1) I71>0 for F#0,
2 [6[=0, | |
(3 llal=|allifl forall aeCt

@ N7 +el I+ lel  (the triangle inequality).
We denote the above norm by || -

For a real vector space; we require in Point 3 thata € @

. The last zequirement in Dofmition 2.2 55 known as the triangle inegual-
ity because it represents in a two- or three-dimensional real vectar
space a relation satisfied by the sides of a trisngle formed by three vectors
fgindftg.

A real (complex) vector space or which a particular norm 1s.given is
called a real (cormplex) normed vector space. A Budlidean space is a
special case of & normed space; this can be seen from the following
5.835, oo
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“Theorem 2.3.. In a Euclidean space € with the inner product

Lf &) the real-valued function !
) e I =VEAIES

..Huqné.. The only boe of the four properties of a norm which is not
satisfied by (2.3) in an evident way is the triangle wbﬂmﬁ.n__#w. .ﬁﬁ easily get

Vgl = gl f O = +H =S o .Am.._gmv. +<glgr -
%) H.Q..w.,.v.-_-_ww&q_hv + gl g A
From the Selrwars-Cauchy inaquality we have

‘ . I ReCF 1 g <KDl </ __.m..,.:.
ich when inserted in 24y ields .+ T _

. |f+glP <EFF 20 el — 1git =1 +leglhs
The zhove relation leads immediately to the triangle inequality. Q.E.D.

4" OrrifoconAL Vecroks aND ORTEONOBMAL Basss @ ° v
Somie ¢lementary geometrical concepts valid for real two- or three-
Jimensional Euclidean spaces can be generalized in a straightforward
manner to any Euclidesn space. .

Definition 2.3. Tn'a Fudlidean space & two véctars f and g are
alled ‘orthogonal, symbolically 7 | g, if {f|g> = 0. Two subsets P
i S of & are said to be erthogonal (symbolically, R | §) if each vector
R is orthogonal to sach vector in S. A set of vectors in which any two
sctors are orthogonal is called an orthogonal system of vectors. Avector f
said to be normalized if | fIl = 1. An orthogonal system of vectors i
dalled an orthonormal system if each vector in the systerm is normalized.
“Theorem 2.4. If 8 is s finite or countably infinite set of vectors in
‘Euclidéan space & and (S) is the vector subspace of & spianned by S,
1 there is an;orthonormal system T of veetors which spans:(.S), i,
which (1) = (§); T'is 2 finite set when S is a fipite set.

“Proof. As the sét .S is at most countable we can write it in the form
_. S={fsfsmd

v assigning cach vector in S to a natural number. In general some of
e vectors in S might be fincarly dependent. We ezn build from §
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ancther set S, of Lnearly: independent vectors spanning the same
subspace (S), i.e, such that (8,) = (8), by the following procedure
{which should be applied consecutively on# = 1, 2,...}: ¥ f, is the zero
veetor or is linearly dependent on fj ., fq , then discard it; otherwise
include it in 8y . Thus we.get a set S of linearly independent vectors

Sp={ b o (So)=1(8): .

We can obriin from S, an orthonormal set T such that (T) = (5)
by the so-called Schwidt (or Gram—Schmidt) arthonormalization precedure.
Sinee gy = P we can introduce the vector )

&

2= Tl __

which is normalized. Procceding by induction, assurme that we have
obtained the orthonormal systern of vectors e .., &,y - Then &y is
given by . . :
_ L |\A...h¥.|u. _hav By = " — er _%av &y

S lan —Hena | gy g — iR ] Exr el

2,

The above vector is.certainiy well defined, since the denominator of the
above expression is differentfrom zero; namely, if it were zero, then we
_ﬁﬁﬁ_n have ! i _ v 2 :

_ : an = {Eia | &2 il — v I,.Aw._.w..v & =1, s 35

. fe., g, would depend on €y ,..., &5y . Hlowever, by salving the equations
fOT £y youry Equy ) it 15 48V to see that we Bave o
B =4af ! P

Sy = Ca iy Chanufn e e m.,alu..eu.phwkﬂ s
and therefore if g, depended.on ¢, ,..., nsly_ ; wwnﬂ_:_%_odﬁ.,m_mcﬁnmona
B0 £ ey Ly » CONLRAry to the fact that §; consists only of linearly
independent vectors: . el c RS - .

‘The vectors of 7 are obviously normalized: Tn brder to prove that T
2 |'egy == By

is an orthonormal system, assume that we have proved that {
ford,j = 1,.,n — 1. Then we have for m <= .

1
|ga = — 4o 2 &

Aw.ﬂ _ fnp =

(ol T cle> S =0,

which proves that e, | egyi= 3 for 4, j == 1,..., n. Thus, by induction T

iz arthonormal. s
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. +As we have for any » that ¢ ,..., ¢, can be expressed in: terms of
13- £n » and vice yverss, we can conclude that (T) = (Sy). QED.

2.4 Tsomompmism oF Eucumran Sraces

“We introduce now a concept of isomorphism of Euslidean spaces,

hich makes two isomorphic Euclidean spaces identical from the

nint of view of their vector structure.as well as from. the paint of view of
¢ structure induced by the inger product. o

Definition’ 2.4. - T'wo Euclidean spaces £, and &, with inner products

Sy and (¢ | Dy, respectively, are fsomerphic (or unstarily equivalent)
there is a mapping of & onto £, .

..W_..Tv.ﬂ.hm h..m..%u.; bm&.u.

uch that if for any fi,£1€ .ﬁ the vector f; & &, is the image of f; and the
Yector go =&, s the image of gy, then

H.H_ N»T+H..u +&u
n.m&_..._lY.nn.wa» ] .ﬁﬂlﬁ.uu«
h fin= frlgade-

- mapping having the above properties is called a writary trapsformation
of £ onte &, . o : b
Theorem 2.5. All complex BEuclidean n-dimensional spaces are
smorphic to (), ahd comsequently (see Exercise 2.) mutually
dsomorphic.

Proof. If £ is an n-timensional Euclidcan space, there is according
Theorem 1.2 a set of 7 'veetors fi .., f, spanning &. According to
heorem 2.4, we can find an orthonormal system of 7 Yectors € ..., €
hich also spans &. Itis'casy to check (see Exercise 2.7) that the mapping

= I

aﬂ- . . . .
-ﬁI -, dy — An“_. _._w.v...-._. &y == Aas _HV.

e
des an jsomorphism between & and (x), QE.D. ..

' . o

Theorem 2.6. A unitary transformation

firJu, hed, fusdy,
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of the Euclidean space. %u onto the Euclidean space dy has a unique
inverse roanping which is 2 unitary transformation: of & onto & . _

Proof.  Wenote that since

lifree= m_a_r_ 1 =gl | i ., -

the imzges f, and g, of fi and gy ..nmmpuanmai,d are distinct whenever
Ji 7 & - Singe the c.EEHw map of & is onro &, , we rounE% that the
inverse of the mapping (2.6) exists.

We leave to the réader the details of the remainder of she. Eo&

EXERCISES
2.1. Show that fora finite interval J

o =] st

{5 an inner product on the vector spacs #(I).

2.2. Bhow that the vector space .wk_,ﬁﬁaj introduced in Section 2.1 is
‘a subspaice of the vector space FO(RY). _

2.3. Prove that (2.2) is an inner wno&ﬂ_wna in %5, (RY).
2.4, Shew that
" KR = el .
1f+el =11+ Nzl

:,mna oc_u:m EEQHE»B&H@K om .m.pm..n_..\.ﬁunmﬁﬂon%f o
and i in additon a 2= Din case of the second rélation. -

2.5. Show that if T is an orthonormal svstem of vectors, then all the
vectors in 7' are necessarily linearly independent.

2.6.. Prove that 2. subspace of a Euclidesn space is also a Euclidean
space.

2.8, Show that the relation of isomorphism of inner-product spacss

isanequivalence relation, e, itis ﬁm.ac Exercise 1.6) refexive, m‘.-EEnBP

and transitive. .

u. . Metric Spaces -

3
“In an r-dimensional Euclidesn space % we cao always fifid, due 1o
Theorems 1.2'and 2.4, 4 basis of 7 Vectors &y ..., & which constitute an
.onnroboaﬂ systen. We caxi then expand any vector f of @. in that basis

2.7. Show that the mappiag (2.5) fs 2 mapping of & cuts B(a) and.
m._um._n it satisfies the requirements of isomorphism given in Definition. 2.4, -

s Metric Spages . " : <

1. Comvescenes 13 Metric SPACES

‘.ao gﬂ? see e that ap = e |

“In an infinite-dimensional mn&.ﬁamﬁ space not every vector can be

"expanded in generil in terms of a finite bcﬁuﬂ. of vectors, We can hope,

wever, to replace (3.1) with the formula | *

,. ' . - -ﬂ." M_ﬁ_#h_r-._ e 't -

ut then we meet with the .m__..cEaE of giving a m.uao_wn Enﬁ:bw ‘to the

nvergence of the above series. This problem iz -golved in it maost
eneral form in topology, but for our purposes it 2.: be sufficiens to
Ive it within the context of metric gpaces.

: Unmﬁ.—ﬁo& 31. If § is a given set, a function d(§,m) on § x §
& metric (or distance fumction) if it fulfills the following requiremerits

oﬂwuu‘m.émm..w _

() dEm>0 i EEn o
ANV nmn.mmm.v — O._ - 0w - e . 5

@), 4, 7) = dn, B e
() d, D < aE )+ din D - (erisogle inequality).

-t & on which 2 metric is defined is called a metric space.

A metric space -docs not have to be w linear space.. For: inetance; 2
gﬁmmnm open domain-in the plane becomes 2 metric space- if the metric
taken to be the distance between each pair of paints belonging toithat
@in; such a domain obviously is not.clased under the operations of
ng; wvectors in the Emnn. but it mﬁcﬁmﬁ 2 metric space oS
.OEQ»EEW from the' case of ome~, two-, or Ennm..mubgﬁbn»— real
wclidean spaces, we En_..nncoﬂ the following moﬁonm A

efinition 3.2. An infinite sequence £, mw yeie 103 metric m—umnn il
iy said to converge to the point £ .4 if for any ¢« > c thereis a positive

..H..u w 7 f= W Bpty - : ) =
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number JV{e) such thard(£, &) < eforallz > N(¢).:An infinite sequence
£ & oo 18 called a Caucky sequence (or 2 fundamental sequence) if for any
€ >0 there is 2 positive number M(e) such that 4(£,,, av < ¢ for all
m, > .am ().

:....H..Wnou.ﬁﬁ 3.1, -If a sequence:f,; , & .0 iii2 Ecﬁmh..m%nn@..\%_cobn
verges to some £ =, then its-limit £ is unique, and the sequence ia
a Cauchy sequence.

Progf. If &, £, ... comverges.to ¢ €4 and to 7 € %, then by defini-
tion, for any e > { thers are Nife) and N,(=) such that d(f, £,) < « for
% > Nyfe) and dfn, £,) <« for = > No(e). Consequently, for
1 > mad(Nyfe), Nofe)) we get by uwm&:zm ‘the triangle Enmca.&. of
UamEﬁob 3.1, Point #

dig,m) < mmm. Ea) T d(Ei ) <o
As ¢ > 0 can be chosen arbitrarily small, we get m:: 7). = 4, which;
according to Definition 3.1, can be true only if § =

, ‘Bimilazly we get

mﬁa 2 ) M m_,\mu vm.. HE £a) <&

ifm, % > N T_,_.wv 1.c., the wn@dﬁﬁn &, 5 By Ech a Cauchy sequence.
D.m,.U

3.2, QCoMpLers MEeTRIC SDACES
In case of scquences of real pumibers, every Cauchy sequence is
 copvergent, Le., the set B of all real mumbers is ncﬁwwmﬁm 3@ state
this generally in Definition 3.3.

Defipition 3.3. A metric space .4 is hé?»h if every Cauchy
sequence converges to an clement of .

Not every metric space is complete, -as exemplified by the set R of all
rational numbers with the metric 20m/n, , malny) = mfm — mfm |,
which is incomplete. However, we know that the set R is nﬂadﬂgm
dense in the set R¥; we stare this o.wn_ﬁ.m:m. «as follows:-

Uﬂm&ﬁoﬂ .w 4. bmcww@nm.um a metric m%u.oe.km«um ?ﬁn..%uug& m&ﬁm
in # if for any given ¢ > 0and any £ € .\&\&aﬂm is an: &nﬂnua 1 vmuaﬂnl
ing t'S for which _mnm 7)) <€

We can reexpress the above definition after Bﬂo@ﬁﬂbﬂ a few topo-
logical -concepts,: m»bnﬁ.—_nﬁa mncnn the: case: of mgm in ong, gog or, three
real - dimensions. i

3. Metoic Spaces - : 27
Definition 3.5. If £isan-element of a metric space-#, then-the set
of-all points.7 satisfying the-inequality d{£, 9) < ‘e for some ¢ <0 iz
called the « neighborhood of & If. §°is a subset of », a point L&.# i
called an acéumulation (ot cluster or limit) point of § if every ¢ neigh-
borhood of { contains 3 point of 8. The set S consisting of all the cluster
points of § is called the closure of-S.: Obviously: u._ﬂuwm S8 ,m. =8
then .3.is called a closed set

“'We say that the subset 8§ of a metric mﬂwnn A is 3&8§& mma....m in :&\
if and only if J# is its closuré; i.e., if and only if § =".4. i
The m.aconmcaa of completing n:.. set Weof rational numbers, ,a% oB‘cnnT
ding it in the set of all real mumbers can be generalized.

Ummuun—cu 36. A metric space A is said to be densely 3&&&«&
injthe metric space W if there is an isometric mapping of 4 into #,
and if the image set 4" of .4 in A is everywhere dense in 4,

A one-to-one mapping £ «» £ of a metric space # into another metric
space A is called fsometric if it preserves. distances, i, if &(E ) =
ﬁ.w.u ¥) for &, &4 and &, q_.mzav whenever £ <» m.mna_ 7y« .m

i

m Oozmﬁmﬁoz OF A ?HB,EQ BPACE 1 Lo _“

Hm_mcu.ﬂnn wh “_wﬁd E.Sa.%_n? Smﬁ:ﬂ mﬂmnn .\k. nm._v_m_n nEvamwm
a complete Eoﬂﬂa space A, called the completion of A . ;

[he' vnoom of ithig' theorem can”be: m:_.nu ‘by generalizing Ow:ﬂonm
nstruction, by i?b_u one’ builds sum wﬁ. om 3& bﬁ:@aam ».33 Em

tional nombers. -

.Denote by ., the mmHEw of =l Fu:n_._u ;sequences 'in- c&. Hm &=
&7, &'\t and me = {£", £&",...} are two such sequences, we say that
they are equivalent if and only if : ol

o AT oy } —ngkﬁm:_._mavic }

EOE of an ﬁﬁﬁd&.gg Hﬁ_.mnpou_.— L i

Unmupﬂoﬂ w 7. A ﬂ&mnon § _..oE_bm _unﬂﬂ een any:two o_..nmnna

.m?cm_,n_.».:mm.w:
£ ~ 7 fmplics that g ~ .._“.‘v .. :
& mogpand moe~"{ implies that § ~ [ g R

__.nmgﬁn..

: . SYIInetTic:
(3} transitive:
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A subset X of § having the property that all the elements of X are
equivalent and that if 7 ~ € and & £ X thenn € X'is calied an equszvalence
elass (with respect to.the o&&ﬁ.ﬁnuo@n&pﬁmou ), R
We denote the family ofall equivalence classes in &, [with respect to
the equivalence reletion given by (3.2)] by the symbol 4, and agree to
denote the equivalence élass containing the Cauchy sequence & also by £
Consequently if &, & e, then & = £ if and only if the Cauchy
sequences £, &7 5.4, are equivalent, i.e.; satisfy (3:2]. R
We introduce the real functon (8, 7) on Mg x A, by defining
for E= {&, £ b anddj = {myym et

o (&, 7 = lim 9l -

(3.3} lim

In order to seé that'the aboye limit exists for any £ Uh= s% ,
the relation (see Exercise 3.2) LT . .

(3.4) () — BlEn o 7N S A £0) + A o)
to show that d(€, , .), d(€; , na)i- i3 2 Cauchy sequence of numbers,
sud therefore has 2 limit; namely as £, & ... and 4, ; %, 2re Cauchy
spquences, we can malke d(&,., £.) < elimn > Ny(e), avd dm,, 7,) <€
i m, 7 > Ny(s), which; usedin'conjunction with (3.4), proyes the state-
Eonﬂt . e P =" -o.n vty w....." - - [ T 1% i
W can show that 4, ) also defizes 3 redl function on . £ by
establishing that -4,(£, ) = (&, 4 if & =& -and ' =4" for
£, &, 7, 7 A, Vo first obedin that 48, ) = &€, ) fom the
inequality {see Exerdse 3.3). . oo R S . :

s _ &m..w.ﬂ..u qm_.u.\v - n”m%aa.v .ﬁnﬁu_ %..nmhwua.ﬁ Mﬁ.xu_ : : )

because (£, £,") ~» 0 as #— oo due to the fact that the Cauchy
sequences £ and £ belong tothe same equivalence class. Similarly we
Bnm_ show that m,h%‘ ;A =-d(€"; ") and thus prove that (&, %) =
AL ) e el : Wil
It is easy to check that the functiond(£,#) defines a metric on..#
{see Exercisc 3.4). We show now that the ensuing metric space, which -
we denote also by -, is-complete. e Rl
Asgme thet 80, Z® s a- Caucky sequence in A, where &% is
the equivalence class containing the Canchy sequénce {4, &,...} of
elements of .#. Choose for cach integer & an element 3, = & s
such that (g, m) = d{&F, £8) < 1k for all m greater than some Ny,
this i¢ certainly possibiebecause £5, ¢4, .. is a Cauchy sequence in ..

1 Metric Spaces” - 29

Consider now the elements 7, = {ng 7y ,---} and £ == {£B),

‘of .4, - We obviously have
. A (E5, ) = d(E, ) < MR

£}

G

T we let in the above relation m — oo, then we find that &(E%, 7,)

A(E9, ) since lim du{ED, M) = 0'as m—+ o0 (3ee Exercises 3.5 30d 3.6)

and consequently . .
B a@wagSuR

¢an, now deduce that 4 = (s g o) A5 2 Owcn_uw.m.sn:mﬁmm in .&.

..m_m?, . d__..u_” e T + ) 7
& (s EM) L dy(F0, E) 24 ol E, T

3 el oo 5 ' Mn . _ .
| mMIT nhmﬁ..ﬂ.ﬂ u.u m.“ u“.v.ml.—luu... oA = ._.. i

: : L ]

ec M, 80 is a Cauchy sequence in A, we can mike d(E™, gy,
nd censequently the ..oh‘_n.mmn.”nmm_..;.n_:.uﬁn,.mmn—m of (3.5) arbitrarily small for
sufficiently large mm and 7. Thus, 7 &4, . B o B 8
We can establish that the equivalence class 4 €4 coptaining the
uchy sequence 4 = {jy » Mg »-op 35 the limit of &Y, §&,. if we write

do(5, %) < ds(F, Hy) + duliiy , EF N

he sight-hand side of {3.6) can be made'arbitrarily small for sufficiently
arge k because d(7 £ < 1R and Ly dofF, 2} = O (5o Exercise
: Huz order to finish the proof of the theorem, we have to embed # into
he complete metric space .#.- To that purpose we map £ €4 into the
Guivalenge class £ containing the sequence {£€,...}. This mapping is
viously mm?&é:n and Isometric, as &(§, 1) = mnhm .mv”,.”m.dhf@mﬂgm“
eimage # of 4 in A is evesywhere dense in #; namely if 7% €4

DtAIns {1y , Ng b6y, then for arbitraty « > 0 we can choose an
T t.%..\ containing e s me ._.....u, P.n_.n._. mﬁo& that {7, .m_.__nu < &

XERGISES e o g
#3.1, Show that the relation £ ~  between any two Cauchy sequonces
= {£yy £g40e) a0d § = {ny, % -} OF 3 moetric gpace o, defived to
ezn that lim, . d(£, , u,) = 0, satisfies the three requirements, given

Definition 3.7 for an equivalence relation.
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.32, Prove that any four lements §y, &5, 7 Of 2 meir
satisfy the relation ot

Ay B — e, )] = HE L m) + #E

mn,.mﬂﬁomt§

¥

3.3." Prove'thatif £ v, € =re w_.wﬂgﬁ of a Metric space J, then
| | A5, ) — bt D <, O o

3.4, Show that the function d(Z 7) defined on 4 X A by (3.3)
satisfies the four requirdments for o metric (these requirsments are,
formulated inDefinition 3.1). e T =

3.5, If in'a metric space & the sequence &, £, ;... converges to £
prove that {or any n = A iy d(En 5 1) =d(&, %)

3.6. 1f £ is the equivalence class of . (introduced in Theorem 3.2
containing the Cauchy sequence £E 8 and g.4, , then for any € > 0
there is an V(&) such that (£, §) < < for all & > Ne), where & =
(€ &3 5--i}- Prove this statement! . .
37, Show thar if 8 is'an everywhere dense stbset of 2 metric
space J, and S, is an everywhere dense subset of Sy, then S, Is every-
where dense in 4. i e 2 i B RS i

4. Hilbert Space
. f COMPLETION OF .A EUCLIDENY SPACE

1t is easy to establish _“wn..w Exerdise d.1) that in normed space A s
wy ¢ N | R

i o metric. Therefore, we can define in.#" convergence, compleieness,
eho, in the metric (4.1), which is then called gonvergence, completenzss, ebc.
in the norm. A complete normed space bears the name of Banach spiice.

The above toncepts (i also be applied to Euclidean spaces, Because
according to Theorem 2.3 we can introducé in such spaces a norm, and
therefore also a metric. A Buclidean space which i complete in the
norm® is called a Hilbert space. :

Not every Euclidean space ig 2 Hilbert space. Fer instance, the
| & e concept o comspléseness cin be dofined and considered Jor ather ropologies
dm%&n«&c.ﬂbnﬁ.nnb&oa. i * = i . [ <

7

Fs
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Enclidean apace %y, (RY) introduced in §2-is not-complete: 'T'o see this;
note that the sequence f , f; ;.. of continuous functions: ' - . vy

|_. ._ for |x| <<
(4.2 h.@_. . _mﬂﬁli_.a |—ap]  for |x|> 2’

is a Cauchy sequence in @y (RY) {sec Exercise 4.2) but it doey not con-
vétge to an element of Eo(RY). In fact,iit is casy to establish that with
increasing i, the funetions in the above sequence approximate arhitrarily
closely in morm. the discontinuous step function

v ..@I.—_ I -
W00 for l=|>a, = _._._

which, however, does not belong to F ().

Definition 4.1. We say that the Euclidean space & can be densely
nbedded in the 'Hilbert space 2 if there is 2 one-to-ove mapping of £
0. 5%, such that the image &' of & 13 everywhere denze in 9, and the
Apping represents an isomorphism between ‘the’ Budlidean spaces &

.Hmmou.g 4,1, Any _H.unoBEmna Buclidean.

embedded in a Hilbert space. . - . _
Proof. Denote by & the compléte metric space built from the set &
f. Cauchy -sequences in &, according to the prosedure used, in. proving
Theorem 3.2. Define in &, the operations

,Wl_l...,wd J.CNHIT%.H ..\.n I_I.Nn-...“ ‘_
of =it dfs} iy

space: & .n.e,u...mn mﬁﬁ&w

b + vl :

ANy SY0 SeqUences f=1fi,foeh 8= (81,8 from &, . 1t 3
¥ to check that the above operations dre operations of vector ‘addition
d multiplication by scaler. " Foxtherrhore, if "/ = f*," where J' =
gy and [ = [ff, fo"vr s e i £ dnd 7 belong ‘to” the same
ivalence class in & and therefore ~ i o
17= ._H.Mmﬁ.__wqé. l...-x..—q_: .ﬂ_.m._.wo.&qaﬂ.unsd =0, ¢
o |lafy’ — af,”| = | & | fa —fa" | = 0; thus, we also bave that
g=j"L 7 .and of =af". Consequently, (4.3) defines vector
petations on &, which thus becomes a vector space. . .-
We now introduce the complex function on £, x & defined by

v . | Qm __ &= tm Q.._ Bad: ; g __

T 0 e
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The fimit in (44) exists becmuse’ (fy i g (s gy i Canchy
sequence of numbers, as can be'seen from the following inequality:©

_QS _h.év .Gna _hst qu: :l.‘n,. _N.av Qa ﬂh‘a. ln.wav_

ﬁ _a ﬁa (e TT 2 __ “for'n.ov 55, where

EB&? __.wna f| = m_.c.. 8

i

__w_r =

while || fn — Fn ! apd | g — & I| can 'be made arbiteerily ‘small for
sufficiently large m and #.

Fucthermore, if /= f €&, then {f 18>
concluded from ﬁrn Eﬁﬁ&.&,

5,. g = Q,E_V_ 5_«@ s

mnbnm. A.w | .mvu “a Eﬁda@ mmmn&m ction on & X, _&w This. ?bnﬂcw
determines an inper product on & (sce ‘Exercise 4. ._G Tt is ‘obvious that
the mapping [ = {fifi-.,} of & into & has an image & which is a
linéar aﬁwwwmna of &; pncowa_bm i the comstruction, ¢ is’ gverywhere
dense in & 2nd the above mapping wuoﬁam an _moﬁcuﬂu_mﬂ between €
and &7., QED:

A similaz ﬁwaeﬁﬁp can-be ﬁﬂoﬂaa ?& noHEnm spaces ﬁamh&mﬁﬁm '4.5).

CF | Bpys e canbe

&w SppaRApLE HHBERT SPACES

In quantum mechanics we dea] at present almost xcclusively with 2
wﬁnﬂ&. class of Hilbert spaces dqw_._nr are Sﬁnn mﬂuﬁmEo

Definition 4.2, The Enclidean m._umam & s num&, ,q%akn if, ,rﬁn
is a countable everywhere dense subset.of veetors of £,

In the ezrly days of research on Hilbert spaces, mommamghm was taken
to be an integral pare’ of the concept of a Hilbert space.

In guamtum Bongom we are concerned wﬂaﬁ.&‘ with mnvawEo
complex Hilbert spaces. We shall_agree +that in the future whenever, we
rofer to 2 space as 2 Hilbert space we mean A complex Hilbert wﬁwoﬁ
except if otherwise statedy R P

Theorém 4.2. “Every wa_uwmmno of 3 m a.mvﬁ,m:n mﬁ&hnﬁ_ﬂ_ mm»on is 2
geparable M¢nr.uomb space. . - e

Proaf. Hﬁn fact that a subspacs &) om a- mbo—&mmﬂ wmmon % is also a
Euclidean space is casy to check (see Exercise w.& {n order to establish

Hilbért Space 33

h _Wmowﬁ@.?_.ﬁw of & construct:arcountzble subset .m_ = .ﬁ: - ms »
: Big w of &, in the following way.

et i} beia countable- aﬁn%ﬁana amumo wd_umw» of _%.
rere has to be mﬁn_._. a wnn because of the separability of #-Let g, denote
vector of &, Satisfying || £, — fnll < 1/m; in case there is atleast-one
such vector, ur the zerp vector in case. .Bmwo is 20 dnnaon of m_._. in the 1/m

ighborhood of fl- .

he set S is everywhere dense in a.m wmopﬁwn for any m?.mﬂ hed;and
>0 we cap find an f, & R.such that || .— f,, [| = 1fm:Thus, by the
_;En of constructing S we omﬂgn&ﬁ bave gn 70 mﬂm n.wmﬁnmcnn

__wlmsa__% & ;..a__+:a?h=a:hu?r

Em_.waqom that S is oéQihﬁa denscindy. Q.E.D. _

3. B mm»nﬁ AS wbrﬁmrmm 9. SEPARABLYE H.Hmewa “SPACES

$ a0 important example of an Eme\ﬁln:ﬂnum_au& mwm_s_.urmm mp:.xﬁ.
Spave we give the space I%{ ), which is basic in B»ndnﬁnavw:sm

LA R

.H_umo..oup 43. The set ESH o_u all, obarno_;Eb noE_w_Bn Ewﬁmﬂ «
with o countable ;nn.&mn of elements

Ly

H.ﬁ..humow— i i it '
2 .
Ylal=< l_._a.o
el
nnn.n,am. 2 mmﬁmHmEn Hilbert wﬂuoo. depoted _uw E 8.__ if ﬂ_p,_ é_o:_uw_.m.mmu.m.
fay + & _
aff = @y By,

o
f

S Tw . eE .

e A.R___mv = M.hz*mw...
=l




_.H.Ew &uc«p inequelity shows &u.ﬁ ﬂ&....,u P 8. %n _nm?_uu.uu Eaa
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the'above inequality. is true for any m'=1,2,... As «™, o . is.a
Cauchy sequence, there is forany given ¢ > 0 an 1V, of<) such n_u:n forany
.a_ n > Ny(e} and any positive integer» -

, Progf.. The operation”(4.7) maps €' X #(o0) into, ¥{c0) because
Sl an P = | @ Bag o b < toorif (45) Bewishod.

"In order to see that.(4.6) maps Ho0) X o) into F(c0), apply the
triangle inequality on 55 y-dimensional space ﬁ?v v < ;Tun,u in ouaa.
to.obtain: - o, . ) ' .

L U IPC I

rh\.u el

i "

M _&mﬁ_ = .a.: 1 £ ||l — ot B < 24

__ e N
i

O_u the oﬁwﬁ. ‘hand, as. w» = _Epn. a, we _usb find "for fix
=v_] r Gn_. ¥ NH._.
N,(e) such that | b —af™ | < m_,,wﬁi.u:w for any i = Ny(¢) and all
convergesif o, & P{): T \m_"t L 2o ». Thus, we get from (4.9) that mn... ﬂc n V Nyle) and all
Similarly, we prove that (4.8) converges »w_m&uﬂn_w _uu nﬁﬁHﬁbN the pasitive infegemay &
Schwarz—Cauchy inequality on ﬁrn v-dimensional space Fp), v < +8.
_HM | 3= nna_ _wu_ m Mf.uv L

[T

W _nmqo as an Eﬂnn_mm mon the: nﬁ&ﬂ. mmua manaﬂmw 4. 3 to nuuﬂn_n that
we deal indeed with a Buclidean space.

“T'o prove that this Buclidsan Spacs is 851&9 agsume ﬂ_umn oM a_mr.:
is a Cauchy sequence, where

in onmﬁ. o ovﬁﬁﬂ

MH__.Nﬁu.nmwﬁ M—hk

.&n Enmcubﬁw _.En:. is,
: HS 3 &a._..mﬁ *

ﬁnnmﬂmn...u1v85

__.u.ﬁ moa pnw a > .? Tur

() . . .
.ﬂ._q T i et it (1

W ; l@.u_u LE-_ o Borall. 5 N,

! ot

™ = | atm

sawh

As we obviously have that for any & = I, 2,... S b I — _
By returaing again to /), 7 < L%,_H%E.P v v i

_,‘m; _..__m _»H_ EM ___m._ .._! n:z »; -u.p. ﬁM._“ tab I ig ..\“

| alm e | |t ail], 2
we deduce that for fixed & <he sequence ai b g®,... is.a Cauchy sequence
of complex numbers; hence, this sequence heas & it vw B .ﬂ,n ww».: prove - i

hat th 20l infinit: ix
that the one-column 1te mALr | wecatablish that § € [%(00) by letting » — on. The relation (4. :”_ Szm s
e U by % that ot,.o4% . convergesto . . .
B=\% inally, in order;to prove the- mnmmnnrwﬁ. of P(0), onnannn the mn; D
= oft .,E ithe ou?a&ﬁﬁb Ehnﬂnﬂw ‘whifrom’ E:T 0] with’ mmu nEEm.obﬂ.E...

i

is an element of #¥(c0), and. that o, «®, .. converges in the notm o B.
By applying again the triangle ansm:nw on the y-dimensional space
By, v < 4o, we obtain

ATisly ¥ v s, e T,

49 v e ot b / " _“.._...,,4..5?“ n.iw - = nno ._ o
ﬁM. | b, — @l LH ﬁM | by, — aim i .».;M [l — gl .L T somne Eﬁﬁan . .H_pn set D i§ countable Hmon ‘Exercise ad In 0&2
. ) L - prove that I¥is everywhere dense“in [ ), ~take any ‘ong=eolumao




36 1. Basic Ideas of Hilbert Spade Theory
it 7 & 15+ 00) with ‘kth, componens () = ¢ - As € F(s0), there
js-for any given ¢ > 0 aninteger # such that - ’

. S
Y ilar<di

=l

Furthermore, as the set N of ratienal pumbers is dense in the set B of
real niuznbers, we can choose an @@ D which sitisfies (4.12) and is such
that | 6 — a5 | < ¢/ 2 for albk =1, . Thus, we bave 7

= 12 o %
¥ _ma_u._ <% .

Tt

Iy = ]| == ﬂM | g — @ [ -
-1
which proves that [i(z0) is séparable.” QE.D.

4.4, ORTEONORMAL Bases Tv HILuERT SPACE

In an infinite-d&Emensional Euclidean space it is' important o distin-~
guish between the vector space (5) spanned by sz S, and the closed
vector space [S] spanned by 5.

Definition 43. . The ouctor space (or Linear manifeld) (S ) spanaed by
vhe subser S of a Euclidean space & is the swallest® subspace of € con-
taining §. The elosed vestor subspase [8] spanned by S is the smallest
closed vector subspace of & gontaining. . -

Tn the finite-dimensional case () = [8] because all finite~dimiensional
Buclidean spaces are closed. (see Exercise 4.8), That this is mot vo n the
infimite-dimensional case can be deduced from the following theorem,
whose simple proof wo leave to th reader (see Exercize 4.9). _

Theorem “44. The subspace (8) of the Euclidesn space & spanmed

by the set -§ is identical with the'set'of all- finjte’ Linear- combinations

Gyfy + - = Bfy of vectors frorn §, de., in customary ‘set-theoretical
notation, : . . : e ol gt
() = {aafs + = = @afut SornFa S Oy M EC, = LTk

.The nﬂnmnm ma@wn. m,..&.mmmnn _wﬂ uwwubmm. by 8 m.w Eaﬁﬁn&. _“_o the &o«.ﬁd m.mlu

Definition 4.4 An orthonoral system S of vectors in a Buclidsan
space & is called an orthonormal basss (o1 2 complate orthonormal system) -
in the Buclidean space & if the closed linear space [I] gpanned by .S is

identical to the entire Euclidean space, i.c., [S] = &.
b * ) RS ST '

. i ® That:s, if %" s 2:subspace of & and §'C ¥, then necessarily (5) c ¥
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It must be realized that an orthonormial basis T id an infinite-~dimen-
sional .manrmnwu space & is not 2 vecior basis for the vector space &, i.e.,
..3 is i peneral diffezent from . For instance, this is so with the basis
', € 5o Of 19 00), where ¢, is the vector whose zth matriz component 1s

it == Bup ;

- Theorem 4.5. A Fuclidean space & is mmmﬁ.&&n if and only if
ere is a countable orthanormal basisin &, _

- Proof. (2) To prove that in 2 separable Euclidean space & there is a,
countable orthonormal basis, note that due to ‘the separability of &
here is a countable set § = {f5, f4 1.} which is everywhere dense in &
According to Theorem 2.4, there is a countable orthonarmal gystem
T = {&y, 2 ..} such that (8) = (T). Due to Theorem 4.4 we have then

M= ===

#(b) Comversely, to show that if there is a countable orthonormal basis
T = {&1 , ¢3 ,-.-}, then & it separable, consider the sct

R = {rje; + - brpew Rer s, Re Ty Im Ty s Iy, W, 2= F,M..:.w

ich is countable, as can be established by using- the technique for
?Em Exercise 4.7. The set R is also everywhere dense in ; namiely,
fe& and e > 0 is given, then as [6, ¢ ,i..] = &, there is a vector
= gy ot chigey such that

1 = iy e ey <2 1

thermore, we can choose complex numbers 7y, 75 ‘With rational
and imaginary parts so that B B _

\ ] 4
__Q.J.a_m_.ﬂ.ﬁ,w{ﬂr .

hus; we have that for £ = rye

R NS “gll+ __w._.m_._ <

- .H_wa.. ﬂ.ﬁﬂns spplies to thie finite-dimensional as well ar the infini-dimensional case,
hough it is stared and praved here for infinite-dimensions) #. In the fnite-dimansionai’
dase, o0 should be replaced by the disension of 2. . o
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- {2)'The only vector f satisfying the relatons
@ <)y =0,

is the zero vector, i.¢., (4.13) impliesf = @,
_“._& For any vector .w €5,

B=1,2

m.zv - A ,_ H

MA&C@P: =0,

_wlu. :

or mwﬁu_uorn&? written & says 3o in

where (e, | £ Is sametimes called theFonrier cogfficzernt of f.
{¢) Any two veetors &. £ m_.&g satisfy Parsenal’s relation:

(4.15) § Q lgy= M Q ﬁs?_%

U= el

@18, -

We start by proving that the nﬂ.ﬁncm {a) and (b) are cquivalent to
=g & s} 18 an orthonormal basis, as, that
Rnc:.nag.ﬂ was monEEm.nnm n UomEﬁon 44. To do that we mvum
prove that (a) implies (b}, (b) uﬂm__ﬁm “T'is a basis™ (as formulated in

the requirement that T

Definition 4.4) and T is2 basis implies (a).

In orderto-show that ?u _Hb_.urnm c& we uh& the mopoﬂgn lemma.

Lemma 4. For any given vector f of 2 ‘Buclidean space & ?n_ﬂ
necessarily separable). and any countable aﬂbon¢§~ m%mﬂnB T.._ -

n &, the mnmﬂnﬂnn fi » o 1o O vectors

(@17 REREEE = M.ﬁ_b;

isa Onﬁnrc SEGUENCE; and the Huo.c:_ﬁ nonmo..oﬁm Am. _ .m > mmnm@f mﬁww&.
inequality
@18) - IE= 3 Ke _2_ < _51

=Lt ™

R R M?é?

oy 39
here Jr ia given By (4.17). We have
o | By =T

,\3_@ i {1y feSev ; :

=L ) At

11A$va M.Amu_.w.xh_&vfa

it
m& Thus

..‘

o o : oy

a5 4fa [ = M Gl e €<% _.__.v s

{1

= ¥ [<eg| /7
it

hich shows in conjunction with (4.19) that Bessel’s u.bman_uﬁ%__ (4.18)
true: From (4.18) we can deduce that

M [Cex | /HF < N[ fIP< oo,

i | o SR i
ﬂwa above series with =obaowwﬁ_¢o terras is bounded. ﬁ_yn_ therefore
nverges. Since 'we know that form >z - .

: b_ ..M_?_b_».

.mla..—.m . . =
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we easily see from (4,20) and (4- Z1) that /5, fes I8 2 Cauchy sequence.

We return now to proving Theorem 4.6. 1f T = {er> &an) 15 2

' countable orthonormal system i the Hilbert space 3, then according
to Lemma 4.1 for any given f & 57 the sequencefy « fz 1 where

M (exl o

is 2 Canchy sequence, Since I s no:ﬁ?..? a“:m sequence vum a limit

gedt.
We can now show that if the statement () about T.in Theorem 4.6

is trae, then (p) is also true +due to the fact thas
narely, for any 2 = 1, 2,0 WE have

G glop =l —fl 0>

- (a) implies = g;

=4 nnvlu.la./ (e _.‘mv Anl«wm “o..
Thaus, if _“wv is true, we mast have f — g = 0.

It is obvious that statement (b)implies that T =
‘because according to Theorem 4.
fosfo s from the lnear space’{T) spanned by T
the form (4.17).

We show now that the fact that T-="{& &
basis implies that (a) is true. Assume that some

the system {ey , & 5o} Since f& [, €0
J-RY SRR - (PR PP N B for some Integer s,

T
Sn = M. Gty o
L Tl

. which converges to f. Ooﬁmﬂcgﬂg. w.m...A Ileg ,|¢.|. ..P__.. B

] Tu

44 QverQ_mav HE,.M@Q o io

and therefore f = i
.We shall nnﬁoumﬁﬁa that .
- hy showing that (b) irnpliss {c); and’ __“nu _.Bm.r.w.w (=)
proof of Thecrem 4.6.
If (k) is tue, mn__n& we have ﬁmnm Exercize 4.10)

(4.22) gy = Eﬁ&.s_nb.

W

fei ; & -} 36 @ Dasis,
4 any f e is the limit of elements
, where £, (T} is of

-} is an orthonormal
fe ' is orthogonal on
= .&u_ there s a sgquUEnce

szatement (c) 13 equivalent to (a) or ﬁ&
Hmpm thus ﬂEmr .?m

Hilbext Space - _ - 41

Jo= 2o e, ?M_W B &%
Bl

R=1

From the relation

Qu_?vﬂ “mn ?_av*@_wv?_mv_u_MQ_@,_X&._NV_

. =L
e immediately obtain Parseval’s relation (4.13). i
If we assume (c} to be true, then (a) isalso true, because if some vector f
orthogonal on {&, &, Be, (fle) =0, k= r 2,..., then by
mﬂaﬁ.m,w = in (4.15) we get

Gy = N Q_&*vnm» [f»=10,

hich implies that f = 0.

Finally, (d) follows from- {¢) by taking again in/{4.15): that f = g.
ice versa, if () is true then (2) has to be trus, because if (f| &> =0
otk = 1, 2,... then we get mneE (2.16) that || f]* = 0, which implies
hatf= 0. Q.ED.

It is easy to see that, due to the fact, that every Euclidesn space can be
mbedded in a Hilbert space (Theorern 4.1),.the criteria (b) (¢), and (d)
are also necessary and sufficient dritéria for T to be an orthonormal basis
Euclidean space in general, while (a) is necessary but not sufficient

mxmnn_mn 4.13). . .

ﬂmeuacwwmwmﬁ .ua. wmmﬁwuwwr H.Hm.wmwa m;nmm
Moo

..._..
e can ' now &gonm»awna,mou_ infinite- &uﬁaﬁmaam__ .I__Unﬂ mm_.mnmm ‘a

mg mb&omozw 1o the Theorem 25 for: @:8&55529&& Hilbert
' LI . ___

' s

_u..nou.nnm. 47, bh complex infinite-dimensional separable -Hilbert
E..QEQE%&E to 4} 00),.and: aopwnmﬁ_gmu._..ﬂﬁnc&q is oBca.ﬁEa.
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42
B, ; then {e,, &,...} is-an oﬂrouoham.ﬁ U&ﬂm in &', where e, denotes'the
where by (4.16) sage of e, - o 0 -
W..._.Q o= | £]R < Lo Proof. 14t & be infinite dimensioval, and denote by - | )y and
o) »p the inner ?dn—:nw» indand & respectively. H_Fon
Therefore . & oD = Ceelepy =y, _

s {e's &0} B8 an, cnﬂ_uoﬂcqu& system in: %\ Since ﬂar i m%‘ has
qique inverse :D.amd f&d, webave _ A
ﬁnn.ﬁﬂmm. if T :

T ?TESV. ST

- ) EEN Lioessagng

# 2
.Am.a. _p mr A

a7 = T o' 1 e | = _

N

o.!

_E.n_.v by Theorem 4. QAS proves that {o,, &, ..h. isa basis. -
: he case when & is. finite: dimensional can be treated-in a similar”

o

then fy s fy e |
.W._a = M bpay
=1

nro:_. ”run in a, bonuunn mvmnn .\_.a the Bm_ mcnnncb A, .mo
[ on \_v.. b .\? is'a Bm_ﬁn. L., it satisfies all the’ nna::.gﬁn_m oh..

_ % ﬂ M ._ Jefinition 3.1.
o 1Y Wt B 4.2 Hu_.oﬂn that ».cu anye > o there is an N{e) such that. "

_.*_?s%_uﬁ:% ~fREd) <

is 2 Cauchy m‘wmunuh; _unn&pmmmoﬂ mHJq m

: |
and’ M L] b converges: This,” “due to* the completeness .um ko

.ﬁ i e convergesto a ﬁﬁon.wn H and we E‘..m. Ve e

.nw..l..Am*.__.ﬂ.v ..ﬂdm\ma_M.m,m_.v.ulw ) e

i=1

£ A i

2, the ioverse Smmm:ﬂm of the mappin; g fr>o 0
%Nm,nvmmnamﬁm, and has [Moa) 48’ its domuin of defhition. Hence’ ﬁ”a,
‘mapping f =~ oy 1573 on&-to-one: mapping of ot ronto F{<0)- It cael be

‘egsily checked (see Exercise 4. 11) that this'mapping supplics an isomor=s . _.H. 2t
phism between # and 4 e). QED. e s 2 Jinear apace with respect to the operations ...
hall later, the above: theoren provices the basis olithes ke .
nﬂ.“m&%hhw of wawmgvnnw s mattix formulation and- Schrogdinger's wave T ..
mon_d..&mﬁom om guanturn. Uno_umEom. FR - _— o= .?&. Pt . .
Theorem 48 fthe Aﬁwwpﬁm o e T mm_.ﬁ Liamie"[| £y = timmy,.s __\. __ exists for every O&SE, mnpcndcn

Foity feé  fed i wmﬁucrmv»namna&aﬁuma&ﬁom&wﬁ&wmmmnan by
mhwzm Euclidean space 53 inp i £, £} is 4 linear subspace’ of _..%“ Q‘,a.-nr_a everywhere

a unitary transformation of the sep
: is an orthonopmal basis in

Euclidean space &7, and if ERI A,
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Single Particle Moving in One UEH&E_.UH 45"
W)= —(d[dx) V(). In classical mechanics; if we denote the momentum
fithe particte by p, we have the following expression for the ncnm_ enecgy
. mﬂnﬂn_r of mass mz

4.6, Shew that (4.6), (4.7), and (4.8) satisfy the axioms for vectar
addition, multiplication by o scalar, and inner ﬁnoas ¢t respectively. ¢

4.7. Show that the subset D of 13(ec) is countable, where D consists
of =l vectors = which have the propersies; (1) a finite number of com-=
potents a- ..., 4y (for some imteger 2 = 1,2,..) of o arc complex
numbers with real and HSM%E parts éEow_ are zatiopal numbers; ' »mm_nw_.q the state of the particle is described by its trajectory a(z),

(2) the rest of the components vanish: e at -any momcent £, x(2) € RL
A’ we mentioned in the Introduction, one of ﬁ_wm postulates of quantum,

irr

echanics i ie that the state of a system is described by a function ¥e), -

.E..". ¥(2) is a vector in a Hilbert space. In-the wave mechanics version
quantum mechanics, the state of a one-particle system is- postolated

E = p*2m + V().

4.8. Show thatevery finite-dimensional Euclidean space i m.mnv»u»_.u_mn
Hilbert space.

4.9, Prove Theorem 44,

4.10. Skow that if in a Buclidean space fi, fy)...-converges in norm
to fand g, , g4 .- 10 g, then (| 20 =lim, o fa 2

4.11. Show that the mapping [+ ay of 3 onto %) satisfies the
requircments for an isomorphism, given in Definitior 2.4,

4.12. Prove thatil one erthonormal system {e; , &, ,...7 in wmﬁncn—nnb
space £ satisfies eitber (4.14), o1 (4.15), or (4.16), for mqoaw veetar f (br,
in case of (4.15), for any two 4383%»@& .mu from &, then {e, , eg -},
15 a basis in &.

4.13. Verify that the criterion of Theorem 4.6(a) is not sifficient to
insire that an orthenormal system {¢;, & ;.-.} in 2 Euclidean space &
satisfying that criteron is 2 basis by mgﬁ.ﬁm the following:

Letf{k, , By ...} bean arthenorma. basis in a Hilbers space . .mw, andlet £
Wm the vector subspace %Eﬁn& 3« A,Mwuu (1/R)A): Bat g rn..

ﬁMa 5 (1/%) by s Ry )y then & 18 a: Euclidean spacch Huuodn that:
wu ley == By & = by \romr €3 5= By penr} i 00t a1 orthonorral basis:

ined.
(b) Hm+m%soﬁromod& te ?Tm, o} c &, mumu,w] o

&b
._.E_ﬁa.a_“w.,aw_. E _

_.mv.?bnﬂcﬂ of £; 3=, 2) 15 assumed tv be once accﬂucbnw_w m.mﬁonf
lecin £; in addition we require for the presént that i(x, 1) have a
ecewise continuous. second deérivative in’x, Thus, we can consider
t) to be at any fixed time ¢ an element of the Euclidean space %75,(R*)
Exercise 5.2) of all ‘complex functions .w. () which vanish at infinity
are mbﬁﬁm integrable, 1.e, :

ST < oo,

ell “ag: onge . contipuously “differentiable with' Ebw.x..s # ?H___l 0.
ﬁﬁu.,. :5 .HEQ. —Uﬂcn_aﬂ. is taken to be (i

A= ﬂa s

a?mn»:&. we _..ancwEnm {5. B to _u.a the uﬁEEﬁEon gondition

5. Wave Mechanics of a Single Particle Moving in -

‘One Dimension I PEF = % | e 10 e == L,

\%_“ﬁuv m@.u»_.“ﬁu denotes the vector Hnﬁhﬂmnaﬂmm EN the function
=l x, £).

“dynamical law we have in &mmm_ﬂu mechanics an equation of
denivable from Newton’s second law, which in the pregent case is

5.1. Tue Formasm ann Its (PARTIAL) PHYSICAL INTERPRETATION

As an illustration of-a physical application of-the m.aann&bm cesnlts, we
shall consider the case of 2 partice réstricted to move in’only. gue. space
dimension ¥within a poter: tial well. We dencte - the space-coordinate °
variable by x and the time: J.uh@.n._c by ¢..Assume that oz our system there
acts a force field 7/ () which can be derived from 2. maﬁnﬁﬁ& V), i,
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