1 (15 points) Let \mathcal{C} be the oriented line segments joining 0 to $1-2 i$. Show that $\left|\int_{\mathcal{C}} z^{3} d z\right| \leq 25$.

2 (20 points) Let \mathcal{C} be a differentiable contour and $S:=I(\mathcal{C})$, so that $\mathcal{C}=\partial S$. Show that $\oint_{\mathcal{C}} \bar{z} d z=2 i A$ where A is the area of S.

3 (15 points) Let $\left\{w_{n}\right\}$ be a sequence in \mathbb{C} such that $\forall m, n \in \mathbb{N},\left|w_{m}-w_{n}\right| \leq 2^{-p}$, where p is the minimum of $\{m, n\}$. Show that $\left\{w_{n}\right\}$ converges.

4 (15 points) Let $\left\{\tau_{n}\right\}$ be the sequence of triangular contours constructed in the proof of Theorem 3 of the video lecture 16 , and $\forall n \in \mathbb{N}, w_{n} \in I\left(\tau_{n}\right)$. Then $\left\{w_{n}\right\}$ converges to a point $c \in \mathbb{C}$. Show that $\forall n \in \mathbb{N}, c \in \overline{I\left(\tau_{0}\right)}$.

5 (15 points) Let $\left\{w_{n}\right\}$ and $\left\{z_{n}\right\}$ be sequences in \mathbb{C} such that $\forall n \in \mathbb{Z}^{+},\left|w_{n}-z_{n}\right|<1 / n$ and that $\left\{z_{n}\right\}$ converges to a complex number z. Show that $\left\{w_{n}\right\}$ converges to z as well.

6 (10 points) Solve Exercise Problem 6.1 on page 117 of the textbook (Howie's Complex Analysis).

7 (10 points) Solve Exercise Problem 6.2 on page 117 of the textbook (Howie's Complex Analysis).

Instruction for submitting homework papers: Prepare a PDF of your homework paper and send it by email to Math 401's teaching assistant, Mr. Keremcan Doğan, before the deadline (Thursday April 09, 2020 at 13:00). His email address is kedogan@ku.edu.tr. You should also upload a copy of this PDF to Math 401's Blackboard page.

