1 Let \mathcal{D} be an open disc with center $z_0 \in \mathbb{C}$, $f : \mathbb{C} \to \mathbb{C}$ be a function that is holomorphic in the closed disc $\overline{\mathcal{D}}$, and for every pair of points $w_1, w_2 \in \mathbb{C}$, $[w_1, w_2]$ denote the oriented line segment joining w_1 to w_2 . Let $x_0 := \operatorname{Re}(z_0)$, $y_0 := \operatorname{Im}(z_0)$, z = x + iy with $x, y \in \mathbb{R}$ be an arbitrary point of \mathcal{D} , \mathcal{C}_1 and \mathcal{C}_2 be the curves defined by

$$\mathcal{C}_1 := [z_0, x_0 + iy] \cup [x_0 + iy, x + iy], \qquad \mathcal{C}_2 := [z_0, x + iy_0] \cup [x + iy_0, x + iy],$$

and $F, G: \mathcal{D} \to \mathbb{C}$ be the functions defined by $F(z) := \int_{\mathcal{C}_1} f(z) dz$ and $G(z) := \int_{\mathcal{C}_2} f(z) dz$.

- **1.a)** (5 points) Use Cauchy's theorem for polygonal contours to show that F = G.
- **1.b)** (10 points) Show that $\frac{\partial}{\partial x}F(x+iy) = f(x+iy)$.
- **1.c)** (10 points) Show that $\frac{\partial}{\partial y}F(x+iy) = if(x+iy)$.

1.d) (10 points) Show that the functions $U, V : \mathcal{D} \to \mathbb{R}$ defined by $U(x, y) := \operatorname{Re}(F(x+iy))$ and $V(x, y) := \operatorname{Im}(F(x+iy))$ satisfy the Cauchy-Riemann conditions in \mathcal{D} .

1.e) (10 points) Show that F is differentiable in \mathcal{D} and F'(z) = f(z).

1.g) (5 points) Use the statement you prove in 1.e to conclude that Cauchy's theorem holds for contours lying in \mathcal{D} .

2 Solve the following exercise problems from the textbook (Howie's Complex Analysis).

2.a) (5 Points) Problem 7.1 b on page 125

- **2.b)** (10 Points) Problem 7.2 on page 125
- **2.c)** (10 Points) Problem 7.3 on page 125
- **2.d)** (15 Points) Problem 7.4 on page 125
- **2.e)** (10 Points) Problem 7.6 on page 126

Instruction for submitting homework papers: Prepare a PDF of your homework paper and send it by email to Math 401's teaching assistant, Mr. Keremcan Doğan, before the deadline. His email address is kedogan@ku.edu.tr. You should also upload a copy of this PDF to Math 401's Blackboard page.