1 Find the radius of convergence of the following power series.

$$\sum_{n=0}^{\infty} 3^{n} z^{n}, \qquad \sum_{n=0}^{\infty} \frac{3^{n} z^{n}}{2^{n} + 4^{n}}, \qquad \sum_{n=0}^{\infty} \frac{2^{n} z^{2n}}{n^{2} + n + 1},$$
$$\sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)^{n} + 1}, \qquad \sum_{n=0}^{\infty} z^{2^{n}}, \qquad \sum_{p \text{ prime}} z^{p}.$$

2 Consider the power series $\sum_{n=0}^{\infty} z^{n!}$ and let $U(1) := \{ w \in \mathbb{C} \mid |w| = 1 \}$

a) Show that the radius of convergence of $\sum_{n=0}^{\infty} z^{n!}$ is 1.

b) Show that for every $\delta \in \mathbb{R}^+$ and every $w \in U(1)$ there are infinitely many $z \in U(1)$ such that $|z - w| < \delta$ and $\sum_{n=0}^{\infty} z^{n!}$ does not converge.

Hint: Let f(z) be the sum of $\sum_{n=0}^{\infty} z^{n!}$ for |z| < 1 and evaluate $\lim_{r \to 1^-} f(re^{2\pi i/m})$ where m is a positive integer.

3 Show that the power series $\sum_{n=0}^{\infty} c_n (z-a)^n$ and $\sum_{n=0}^{\infty} \frac{c_n}{n+1} (z-a)^{n+1}$ have the same radius of convergence.