1 Find the radius of convergence of the following power series.

$$
\begin{array}{lll}
\sum_{n=0}^{\infty} 3^{n} z^{n}, & \sum_{n=0}^{\infty} \frac{3^{n} z^{n}}{2^{n}+4^{n}}, & \sum_{n=0}^{\infty} \frac{2^{n} z^{2 n}}{n^{2}+n+1}, \\
\sum_{n=0}^{\infty} \frac{z^{2 n}}{(2 n)^{n}+1}, & \sum_{n=0}^{\infty} z^{2^{n}}, & \sum_{\text {p prime }} z^{p} .
\end{array}
$$

2 Consider the power series $\sum_{n=0}^{\infty} z^{n!}$ and let $U(1):=\{w \in \mathbb{C}| | w \mid=1\}$
a) Show that the radius of convergence of $\sum_{n=0}^{\infty} z^{n!}$ is 1 .
b) Show that for every $\delta \in \mathbb{R}^{+}$and every $w \in U(1)$ there are infinitely many $z \in U(1)$ such that $|z-w|<\delta$ and $\sum_{n=0}^{\infty} z^{n!}$ does not converge.

Hint: Let $f(z)$ be the sum of $\sum_{n=0}^{\infty} z^{n!}$ for $|z|<1$ and evaluate $\lim _{r \rightarrow 1^{-}} f\left(r e^{2 \pi i / m}\right)$ where $m$ is a positive integer.

3 Show that the power series $\sum_{n=0}^{\infty} c_{n}(z-a)^{n}$ and $\sum_{n=0}^{\infty} \frac{c_{n}}{n+1}(z-a)^{n+1}$ have the same radius of convergence.

