MATH 320: QUIZ-4, Solutions

Instructor: Ali Mostafazadeh
 Time: 35 min

April 18, 2005

1. Suppose T be a linear operator on a finite dimensional vector space V such that for every $v \in V, T v=T(T v)$. Prove that $V=$ null $T \bigoplus$ range T. (10 points)

Proof. Let $v \in V$. Then $v=T(v)+v-T(v)$, but $T(v-T(v))=T(v)-T^{2}(v)=$ $T(v)-T(v)=0$, hence $v-T(v) \in$ null T. Hence, $V=$ null $T+$ range T. Now, let $v \in$ null $T \cap$ range T. Then, $T(v)=0$ and $\exists u \in V \ni T(u)=v$, but then $v=T(u)=T(T(u))=T(v)=0$. Hence, null $T \cap$ range $T=\{0\}$. **
2. Let T be a linear operator on a complex inner product space V such that ($T x, x)=0$ for every $x \in V$. Prove T is the zero operator. (10 points)

Proof. Let $u, v \in V$. Then, $4(T u, v)=(T(u+v), u+v)-(T(u-v), u-$ $v)+i(T(u+i v), u+i v)-i(T(u-i v), u-i v)$, but since $(T x, x)=0$, we have $(T u, v)=0$. Take, $v=T u$, we have $\|T u\|^{2}=0$, hence $T u=0$ for all $u \in V . * *$

