Math 320: Quiz 1, Part 1

20:00-20:50, Oct. 20, 2020

Problem 1 (6 pts, 10+3 minutes) Let V be the real vector space of all functions $f : \mathbb{R} \to \mathbb{R}$ with domain \mathbb{R} , and U be the subset of V consisting of functions $g : \mathbb{R} \to \mathbb{R}$ such that there is some $a \in \mathbb{R}$, g(x) = 0 for all $x \ge a$, i.e.,

$$U := \left\{ g \in V \ \Big| \ \exists a \in \mathbb{R}, \ \forall x \in [a, \infty), \ g(x) = 0 \right\}.$$

Show that U is a subspace of V.

Problem 2 (10+3 minutes) Let V be a vector space over \mathbb{F} , A and B be subsets of V that are NOT necessarily subspaces, and

$$A + B := \Big\{ v \in V \ \Big| \ \exists a \in A, \ \exists b \in B, \ v = a + b \Big\}.$$

2.a (4 pts) Is $\text{Span}(A + B) \subseteq \text{Span}(A) + \text{Span}(B)$? Why?

2.b (4 pts) Is $\text{Span}(A) + \text{Span}(B) \subseteq \text{Span}(A+B)$? Why?

Problem 3 (6 pts, 17+3 minutes) Consider the complex vector space obtained by endowing \mathbb{C}^2 with componentwise addition and scalar multiplication, $\mathbf{0} := (0,0)$, $\mathbf{a} \in \mathbb{C}^2 \setminus \{\mathbf{0}\}$, $\alpha_1, \alpha_2 \in \mathbb{C}$ be the components of \mathbf{a} , so that $\mathbf{a} = (\alpha_1, \alpha_2)$, and $\overline{\mathbf{a}} := (\overline{\alpha_1}, \overline{\alpha_2})$ be the complex-conjugate of \mathbf{a} . Here, for all $j \in \{1, 2\}$, $\overline{\alpha_j}$ stands for the complex-conjugate of α_j . Let $U_1 := \text{Span}(\{\mathbf{a}\})$ and $U_2 := \text{Span}(\{\overline{\mathbf{a}}\})$. Find a necessary and sufficient condition on α_1 and α_2 under which $\mathbb{C}^2 = U_1 \oplus U_2$. Justify your response.

Note: In your response, you may use your knowledge of the solutions of systems of linear algebraic equations that you have treated in Math 107.