Math 320: Quiz 1, Part 1
 20:00-20:50, Oct. 20, 2020

Problem 1 (6 pts, $10+3$ minutes) Let V be the real vector space of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ with domain \mathbb{R}, and U be the subset of V consisting of functions $g: \mathbb{R} \rightarrow \mathbb{R}$ such that there is some $a \in \mathbb{R}, g(x)=0$ for all $x \geq a$, i.e.,

$$
U:=\{g \in V \mid \exists a \in \mathbb{R}, \quad \forall x \in[a, \infty), g(x)=0\}
$$

Show that U is a subspace of V.
Problem 2 (10+3 minutes) Let V be a vector space over \mathbb{F}, A and B be subsets of V that are NOT necessarily subspaces, and

$$
A+B:=\{v \in V \mid \exists a \in A, \exists b \in B, v=a+b\} .
$$

2.a (4 pts) Is $\operatorname{Span}(A+B) \subseteq \operatorname{Span}(A)+\operatorname{Span}(B)$? Why?
2.b (4 pts) Is $\operatorname{Span}(A)+\operatorname{Span}(B) \subseteq \operatorname{Span}(A+B)$? Why?

Problem 3 ($6 \mathrm{pts}, 17+3$ minutes) Consider the complex vector space obtained by endowing \mathbb{C}^{2} with componentwise addition and scalar multiplication, $\mathbf{0}:=(0,0)$, $\mathbf{a} \in \mathbb{C}^{2} \backslash\{\mathbf{0}\}, \alpha_{1}, \alpha_{2} \in \mathbb{C}$ be the components of \mathbf{a}, so that $\mathbf{a}=\left(\alpha_{1}, \alpha_{2}\right)$, and $\overline{\mathbf{a}}:=\left(\overline{\alpha_{1}}, \overline{\alpha_{2}}\right)$ be the complex-conjugate of a. Here, for all $j \in\{1,2\}, \overline{\alpha_{j}}$ stands for the complex-conjugate of α_{j}. Let $U_{1}:=\operatorname{Span}(\{\mathbf{a}\})$ and $U_{2}:=\operatorname{Span}(\{\overline{\mathbf{a}}\})$. Find a necessary and sufficient condition on α_{1} and α_{2} under which $\mathbb{C}^{2}=U_{1} \oplus U_{2}$. Justify your response.
Note: In your response, you may use your knowledge of the solutions of systems of linear algebraic equations that you have treated in Math 107.

