Suggested Exercise Problems 7

Solve the following problems under the assumption that V is finitedimensional.

Show that if V is a real inner-product space, then the set of self-adjoint operators on V is a subspace of $\mathcal{L}(V)$.

Show that if V is a complex inner-product space, then the set of self-adjoint operators on V is not a subspace of $\mathcal{L}(V)$.

Prove that if $T \in \mathcal{L}(V)$ is normal, then

$$
\text { range } T=\operatorname{range} T^{*} \text {. }
$$

Prove that if $T \in \mathcal{L}(V)$ is normal, then

$$
\operatorname{null} T^{k}=\operatorname{null} T \text { and } \operatorname{range} T^{k}=\operatorname{range} T
$$

for every positive integer k.

Prove that the sum of any two positive operators on V is positive.

Suppose that T is a positive operator on V. Prove that T is invertible if and only if

$$
\langle T v, v\rangle>0
$$

for every $v \in V \backslash\{0\}$.

Prove or give a counterexample: if $S \in \mathcal{L}(V)$ and there exists an orthonormal basis $\left(e_{1}, \ldots, e_{n}\right)$ of V such that $\left\|S e_{j}\right\|=1$ for each e_{j}, then S is an isometry.

Suppose $T \in \mathcal{L}(V)$ is self-adjoint, $\lambda \in \mathbf{F}$, and $\epsilon>0$. Prove that if there exists $v \in V$ such that $\|v\|=1$ and

$$
\|T v-\lambda v\|<\epsilon
$$

then T has an eigenvalue λ^{\prime} such that $\left|\lambda-\lambda^{\prime}\right|<\epsilon$.

