Suggested Exercise Problems 7

Solve the following problems under the assumption that V is finite-dimensional.

Show that if V is a real inner-product space, then the set of self-adjoint operators on V is a subspace of $\mathcal{L}(V)$.

Show that if V is a complex inner-product space, then the set of self-adjoint operators on V is not a subspace of $\mathcal{L}(V)$.

Prove that if $T \in \mathcal{L}(V)$ is normal, then

range
$$T = \text{range } T^*$$
.

Prove that if $T \in \mathcal{L}(V)$ is normal, then

$$\operatorname{null} T^k = \operatorname{null} T$$
 and $\operatorname{range} T^k = \operatorname{range} T$

for every positive integer k.

Prove that the sum of any two positive operators on V is positive.

Suppose that T is a positive operator on V. Prove that T is invertible if and only if

$$\langle T\nu, \nu \rangle > 0$$

for every $v \in V \setminus \{0\}$.

Prove or give a counterexample: if $S \in \mathcal{L}(V)$ and there exists an orthonormal basis (e_1,\ldots,e_n) of V such that $\|Se_j\|=1$ for each e_j , then S is an isometry.

Suppose $T \in \mathcal{L}(V)$ is self-adjoint, $\lambda \in \mathbf{F}$, and $\epsilon > 0$. Prove that if there exists $\nu \in V$ such that $\|\nu\| = 1$ and

$$||T\nu - \lambda\nu|| < \epsilon$$
,

then *T* has an eigenvalue λ' such that $|\lambda - \lambda'| < \epsilon$.