Suggested Exercise Problems 6

Prove that

$$\left(\sum_{j=1}^{n} a_j b_j\right)^2 \le \left(\sum_{j=1}^{n} j a_j^2\right) \left(\sum_{j=1}^{n} \frac{b_j^2}{j}\right)$$

for all real numbers a_1, \ldots, a_n and b_1, \ldots, b_n .

Prove that if V is a real inner-product space, then

$$\langle u, v \rangle = \frac{\|u + v\|^2 - \|u - v\|^2}{4}$$

for all $u, v \in V$.

Prove that if V is a complex inner-product space, then

$$\langle u, v \rangle = \frac{\|u + v\|^2 - \|u - v\|^2 + \|u + iv\|^2 i - \|u - iv\|^2 i}{4}$$

for all $u, v \in V$.

Suppose $(e_1, ..., e_m)$ is an orthonormal list of vectors in V. Let $v \in V$. Prove that

$$\|\mathbf{v}\|^2 = |\langle \mathbf{v}, e_1 \rangle|^2 + \cdots + |\langle \mathbf{v}, e_m \rangle|^2$$

if and only if $\nu \in \text{span}(e_1, \dots, e_m)$.

Prove that if $P \in \mathcal{L}(V)$ is such that $P^2 = P$ and

$$||Pv|| \leq ||v||$$

for every $v \in V$, then P is an orthogonal projection.

Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V. Prove that U is invariant under T if and only if $P_UTP_U = TP_U$.

Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V. Prove that U and U^{\perp} are both invariant under T if and only if $P_{U}T = TP_{U}$.