## Suggested Exercise Problems 6

Prove that

$$
\left(\sum_{j=1}^{n} a_{j} b_{j}\right)^{2} \leq\left(\sum_{j=1}^{n} j a_{j}^{2}\right)\left(\sum_{j=1}^{n} \frac{b_{j}^{2}}{j}\right)
$$

for all real numbers $a_{1}, \ldots, a_{n}$ and $b_{1}, \ldots, b_{n}$.

Prove that if $V$ is a real inner-product space, then

$$
\langle u, v\rangle=\frac{\|u+v\|^{2}-\|u-v\|^{2}}{4}
$$

for all $u, v \in V$.

Prove that if $V$ is a complex inner-product space, then

$$
\langle u, v\rangle=\frac{\|u+v\|^{2}-\|u-v\|^{2}+\|u+i v\|^{2} i-\|u-i v\|^{2} i}{4}
$$

for all $u, v \in V$.

Suppose $\left(e_{1}, \ldots, e_{m}\right)$ is an orthonormal list of vectors in $V$. Let $v \in V$. Prove that

$$
\|v\|^{2}=\left|\left\langle v, e_{1}\right\rangle\right|^{2}+\cdots+\left|\left\langle v, e_{m}\right\rangle\right|^{2}
$$

if and only if $v \in \operatorname{span}\left(e_{1}, \ldots, e_{m}\right)$.

Prove that if $P \in \mathcal{L}(V)$ is such that $P^{2}=P$ and

$$
\|P v\| \leq\|v\|
$$

for every $v \in V$, then $P$ is an orthogonal projection.

Suppose $T \in \mathcal{L}(V)$ and $U$ is a subspace of $V$. Prove that $U$ is invariant under $T$ if and only if $P_{U} T P_{U}=T P_{U}$.

Suppose $T \in \mathcal{L}(V)$ and $U$ is a subspace of $V$. Prove that $U$ and $U^{\perp}$ are both invariant under $T$ if and only if $P_{U} T=T P_{U}$.

