Suggested Exercise Problems 5

Prove or give a counterexample: if U is a subspace of V that is invariant under every operator on V, then $U=\{0\}$ or $U=V$.

Suppose that $S, T \in \mathcal{L}(V)$ are such that $S T=T S$. Prove that $\operatorname{null}(T-\lambda I)$ is invariant under S for every $\lambda \in \mathbf{F}$.

Find all eigenvalues and eigenvectors of the backward shift operator $T \in \mathcal{L}\left(\mathbf{F}^{\infty}\right)$ defined by

$$
T\left(z_{1}, z_{2}, z_{3}, \ldots\right)=\left(z_{2}, z_{3}, \ldots\right)
$$

Suppose $T \in \mathcal{L}(V)$ and dim range $T=k$. Prove that T has at most $k+1$ distinct eigenvalues.

Suppose $S, T \in \mathcal{L}(V)$. Prove that $S T$ and $T S$ have the same eigenvalues.

Suppose $T \in \mathcal{L}(V)$ is such that every vector in V is an eigenvector of T. Prove that T is a scalar multiple of the identity operator.

Suppose V is a complex vector space and $T \in \mathcal{L}(V)$. Prove that T has an invariant subspace of dimension j for each $j=$ $1, \ldots, \operatorname{dim} V$.

Suppose that $T \in \mathcal{L}(V)$ has $\operatorname{dim} V$ distinct eigenvalues and that $S \in \mathcal{L}(V)$ has the same eigenvectors as T (not necessarily with the same eigenvalues). Prove that $S T=T S$.

Suppose $P \in \mathcal{L}(V)$ and $P^{2}=P$. Prove that $V=$ null $P \oplus$ range P.

