Suggested Exercise Problems 2

Suppose m is a positive integer. Is the set consisting of 0 and all polynomials with coefficients in F and with degree equal to m a subspace of $\mathcal{P}(F)$?

Prove that F^{∞} is infinite dimensional.

Prove that V is infinite dimensional if and only if there is a sequence v_1, v_2, \ldots of vectors in V such that (v_1, \ldots, v_n) is linearly independent for every positive integer n.

Suppose that V is finite dimensional, with dim V = n. Prove that there exist one-dimensional subspaces U_1, \ldots, U_n of V such that

$$V = U_1 \oplus \cdots \oplus U_n$$
.

Suppose that $p_0, p_1, ..., p_m$ are polynomials in $\mathcal{P}_m(\mathbf{F})$ such that $p_j(2) = 0$ for each j. Prove that $(p_0, p_1, ..., p_m)$ is not linearly independent in $\mathcal{P}_m(\mathbf{F})$.

You might guess, by analogy with the formula for the number of elements in the union of three subsets of a finite set, that if U_1, U_2, U_3 are subspaces of a finite-dimensional vector space, then

$$\dim(U_1 + U_2 + U_3)$$

= $\dim U_1 + \dim U_2 + \dim U_3$
- $\dim(U_1 \cap U_2) - \dim(U_1 \cap U_3) - \dim(U_2 \cap U_3)$
+ $\dim(U_1 \cap U_2 \cap U_3)$.

Prove this or give a counterexample.

Suppose V is finite dimensional. Prove that if U_1, \ldots, U_m are subspaces of V such that $V = U_1 \oplus \cdots \oplus U_m$, then

$$\dim V = \dim U_1 + \cdots + \dim U_m.$$