Math 303: Final Exam (Part 1) May 31, 2020

- This exam consists of five separate 30 minutes-long parts.

- Solve the problem(s) assigned to you. Otherwise you will not be getting any credit.

- Write your name and student ID number in the solution page to each problem, <u>include a handwritten</u> copy of the following honor code, and place your signature underneath. "I hereby certify that I have completed this exam on my own without any help from anyone else. I understand that the only sources of authorized information in this open-book exam are (i) the course textbook and (ii) the material that is posted at Blackboard for this class, available to all other students. I have not used, accessed or received any information from any other unauthorized source in taking this exam. The effort in the exam thus belongs completely to me."

- Take a photo of the solution page(s) for each problem and upload it to Blackboard as a single electronic file before the due time indicated in the assignment. In addition, send the same file via email to **amostafazadeh@ku.edu.tr** before or within the last three minutes after the end of the time given for each problem. Late submissions of the solution to the problems will not be taken into consideration.

Problem 1 for students with ID numbers: 40600, 49960, 54212, 60333, 64365, 64821

1.a (5 pts) Let $r : \mathbb{R}^3 \to \mathbb{R}$ be defined by $r(x_1, x_2, x_3) := \sqrt{\sum_{i=1}^3 x_i^2}$. By performing explicit calculations, express $\nabla \cdot \left(\frac{\nabla r}{r}\right)$ as a function of r wherever it exists.

1.b (10 pts) Given arbitrary twice differentiable functions $\phi : \mathbb{R}^3 \to \mathbb{R}$ and $\mathbf{A} : \mathbb{R}^3 \to \mathbb{R}^3$, use the properties of the Kronecker delta and Levi Civita epsilon symbols to find functions $B_{ijk}, C_{ij} : \mathbb{R}^3 \to \mathbb{R}$ such that $\mathbf{A} \cdot \left[\nabla \times \left(\phi \nabla \phi \times \mathbf{A} \right) \right] = \sum_{i \ i=1}^3 A_i L_{ij} A_j$ and $L_{ij} := \sum_{k=1}^3 B_{ijk} \frac{\partial^k}{\partial x^k} + C_{ij}$.

Problem 1 for students with ID numbers: 50127, 64558, 64869, 54238, 60581, 69720

1.a (5 pts) Let $r : \mathbb{R}^3 \to \mathbb{R}$ be defined by $r(x_1, x_2, x_3) := \sqrt{\sum_{i=1}^3 x_i^2}$. By performing explicit calculations, express $\nabla \cdot \left(r \nabla \frac{1}{r} \right)$ as a function of r wherever it exists.

1.b (10 pts) Given arbitrary twice differentiable functions $\phi : \mathbb{R}^3 \to \mathbb{R}$ and $\mathbf{A} : \mathbb{R}^3 \to \mathbb{R}^3$, use the properties of the Kronecker delta and Levi Civita epsilon symbols to find functions $B_{ijk}, C_{ij} : \mathbb{R}^3 \to \mathbb{R}^3$

such that
$$\mathbf{A} \cdot \{ \nabla \phi \times [\nabla \times (\phi \mathbf{A})] \} = \sum_{i,j=1}^{3} A_i L_{ij} A_j \text{ and } L_{ij} := \sum_{k=1}^{3} B_{ijk} \frac{\partial^k}{\partial x^k} + C_{ij}$$

Problem 1 for students with ID numbers: 49642, 64842, 69287, 40557, 53932

1.a (5 pts) Let $r : \mathbb{R}^3 \to \mathbb{R}$ be defined by $r(x_1, x_2, x_3) := \sqrt{\sum_{i=1}^3 x_i^2}$. By performing explicit calculations, express $\frac{\nabla^2 r}{r}$ as a function of r wherever it exists.

1.b (10 pts) Given arbitrary twice differentiable functions $\phi : \mathbb{R}^3 \to \mathbb{R}$ and $\mathbf{A} : \mathbb{R}^3 \to \mathbb{R}^3$, use the properties of the Kronecker delta and Levi Civita epsilon symbols to find functions $B_{ijk}, C_{ij} : \mathbb{R}^3 \to \mathbb{R}^3$

such that
$$\nabla \phi \cdot \{\mathbf{A} \times [\nabla \times (\phi \mathbf{A})]\} = \sum_{i,j=1}^{3} A_i L_{ij} A_j$$
 and $L_{ij} := \sum_{k=1}^{3} B_{ijk} \frac{\partial^k}{\partial x^k} + C_{ij}$.

$$\frac{P_{obldem} I/Grow_{T} I}{\frac{1}{4 \cdot q} r = (\frac{\pi}{2} \times x^{2})^{1/2}}$$

$$\frac{\partial_{0}r}{\partial_{1}r} = \frac{1}{2} (\frac{\pi}{2} \times x^{2})^{-1/4} \frac{\pi}{2} 2 \times (\delta i_{j} = \frac{X_{j}}{r}) = \frac{\pi}{2} \quad \overline{\nabla} r = \frac{\pi}{r}$$

$$\overline{\nabla} \cdot (\frac{\nabla r}{r}) = \frac{\pi}{3} \partial_{j} (\frac{X_{j}}{r^{2}}) = \frac{1}{r} \frac{3}{2} \frac{3}{3} \cdot x_{j} + \frac{3}{3} \frac{2}{r} \times \partial_{j} (\frac{\pi}{r} \times x^{2})^{-1}$$

$$= \frac{3}{r^{2}} + \frac{3}{2} \times j [-(\frac{\pi}{r} \times x^{2})^{-2} (2 \times (\delta i_{j})]$$

$$= \frac{3}{r^{2}} - \frac{2}{r^{2}} = \frac{1}{r^{2}}$$

$$\frac{1}{r^{4}}$$

$$= \frac{3}{r^{2}} - \frac{2}{r^{2}} = \frac{1}{r^{2}}$$

$$\frac{1}{r^{4}}$$

$$= \frac{3}{r} - \frac{2}{r^{2}} = \frac{1}{r^{2}}$$

$$\frac{1}{r^{4}}$$

$$= \frac{1}{2} \frac{3}{r^{2} + \frac{3}{2}} \times j [-(\frac{\pi}{r} \times x^{2})^{-2} (2 \times (\delta i_{j})]$$

$$= \frac{1}{2} \frac{3}{r^{2} + \frac{3}{r^{2}}} = \frac{1}{r^{2}}$$

$$\frac{1}{r^{4}} = \frac{3}{r^{2}} - \frac{2}{r^{2}} = \frac{1}{r^{2}}$$

$$\frac{1}{r^{4}} = \frac{3}{r^{2}} - \frac{2}{r^{2}} = \frac{1}{r^{2}}$$

$$\frac{1}{r^{4}} = \frac{1}{r^{2}} \frac{3}{r^{4}} + \frac{2}{r^{4}} + \frac$$

=)
$$L_{ij} = \sum_{n=1}^{3} \frac{1}{2} (-\delta_{ij}) \partial_n 4 + \delta_{jn} \partial_i 4^2) \partial_n$$

+ $\frac{1}{2} (-\partial_i \partial_j 4^2 - \nabla_4^2 \delta_{ij})$

=) $B_{iju} = \frac{1}{2} (\delta_{ju} \partial_{i} d^{2} - \delta_{ij} \partial_{u} d^{2})$ $C_{ij} = \frac{1}{2} (\partial_{i} \partial_{j} d^{2} - \nabla^{2} d^{2} \delta_{ij})$

$$\frac{Problem \ 1 \ (Group 2)}{\frac{1}{2} \cdot \alpha \quad r^{-1} = (\sum_{i=1}^{3} \times i^{2})^{-1/2}} \frac{1}{2} \cdot \alpha \quad r^{-1} = (\sum_{i=1}^{3} \times i^{2})^{-3/2} \sum_{i=1}^{3} 2 \times i^{5} \delta_{ij} = -\frac{x_{i}}{r^{3}}$$

$$\overline{\nabla} \cdot (r \ \overline{\nabla}_{r}^{1}) = \sum_{j=1}^{3} \partial_{j} \cdot (-\frac{x_{j}}{r^{2}}) = -\frac{1}{r^{2}} \sum_{j=1}^{3} \partial_{j} \cdot x_{j} - \sum_{j=1}^{3} x_{j} \cdot \partial_{j} (r^{-2})$$

$$= -\frac{3}{r^{2}} - \sum_{j=1}^{3} \times j \cdot \partial_{j} (\sum_{i=1}^{3} \times i^{2})^{-1} - (\sum_{i=1}^{3} \times i^{2})^{-2} \sum_{i=1}^{3} 2 \times i^{5} \delta_{ij}$$

$$= -\frac{3}{r^{2}} + 2 \sum_{j=1}^{3} \frac{x_{j}^{2}}{r^{4}} = -\frac{1}{r^{2}}$$

$$\frac{1.6}{4.6} = \frac{3}{2} + \frac{3}{2} + \frac{3}{2} = \frac{3}{2} + \frac{3}{2} + \frac{3}{2} = \frac{3}{2} + \frac{3}{2} + \frac{3}{2} + \frac{3}{2} = \frac{3}{2} + \frac{3}{2} +$$

$$= \sum_{i=1}^{3} A_{i} [(\partial_{i} \phi)(\partial_{j} \phi) + \phi(\partial_{j} \phi)]_{u=1}^{2} \delta_{i} u \partial_{u}] A_{j}$$

$$= (\sum_{i=1}^{3} A_{i}^{2}) [(\sum_{j=1}^{3} (\partial_{j} \phi)^{2}] - \phi \sum_{i=1}^{3} A_{i} [(\sum_{j=1}^{3} (\partial_{j} \phi)^{2})] A_{i}$$

$$= (\sum_{i=1}^{3} (\partial_{u} \phi) \partial_{u}$$

$$= (\sum_{i=1}^{3} (\partial_{u} \phi) \partial_{u}$$

$$= \sum_{i \neq j=1}^{n} A_i L_{ij} A_j$$

=)
$$L_{ij} = (\partial_i \phi)(\partial_j \phi) - (\partial_i \phi)^2 \delta_{ij} + \frac{3}{2} \phi [(\partial_i \phi) \delta_{ik} - (\partial_k \phi) \delta_{ij}]^2 h$$

=)
$$B_{ijk} = \Phi [(\partial_{j} \phi^{2}) \delta_{ik} - (\partial_{k} \phi^{2}) \delta_{ij}]$$

= $\frac{1}{2} [(\partial_{j} \phi^{2}) \delta_{ik} - (\partial_{k} \phi^{2}) \delta_{ij}]$

&
$$c_{12} = (\partial_{12} +)(\partial_{23} +) - 1 \overrightarrow{2} + 1 \overrightarrow{8};$$

$$\frac{Problem \pm 1/6roup3}{1 \cdot a} = \frac{1}{r} \cdot \frac{1}{r} \cdot \frac{2}{r} \cdot \frac{1}{r} \cdot \frac{3}{r} \cdot \frac{2}{r} \cdot \frac{1}{r} \cdot \frac{2}{r} \cdot \frac{1}{r} \cdot \frac{2}{r} \cdot \frac{1}{r} \cdot \frac{1}{r} \cdot \frac{2}{r} \cdot \frac{1}{r} \cdot \frac{1}{r} \cdot \frac{2}{r} \cdot \frac{1}{r} \cdot \frac{1$$

$$(4)$$

$$(4)$$

$$= \frac{\nabla}{\sqrt{4}} \cdot \{ \vec{A} \times [\nabla \times (\vec{A} \cdot \vec{A})] \}_{j}^{2} \in (\vec{A} \cdot \vec{A}) = [\sum_{j=1}^{2} (\hat{A}_{j} + i)]_{j=1}^{2} \in (\vec{A} \cdot \vec{A}) = (\vec{A} \cdot \vec{A}) =$$

Math 303: Final Exam (Part 2) May 31, 2020

- This exam consists of five separate 30 minutes-long parts.

- Solve the problem(s) assigned to you. Otherwise you will not be getting any credit.

- Write your name and student ID number in the solution page to each problem.

- Take a photo of the solution page(s) for each problem and upload it to Blackboard as a single electronic file before the due time indicated in the assignment. In addition, send the same file via email to **amostafazadeh@ku.edu.tr** before or within the last three minutes after the end of the time given for each problem. Late submissions of the solution to the problems will not be taken into consideration.

Problem 2 for students with ID numbers: 40600, 49960, 54212, 60333, 64365, 64821

Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function such that Im[f(0)] = 1, and suppose that there is a function $q : \mathbb{R} \to \mathbb{R}$ such that for all $(x, y) \in \mathbb{R}^2$, $\text{Re}[f(x + iy)] = (x \cos x + y \sin x)q(y) - x$ and q(0) = -1.

2.a (10 pts) Show that q(y) satisfies yq''(y) + 2q'(y) - (y+2)q(y) = 0.

2.b (10 pts) Find an explicit formula for q(y).

2.c (Optional 10 bonus pts) Find an explicit formula for f(z).

Problem 2 for students with ID numbers: 50127, 64558, 64869, 54238, 60581, 69720

Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function such that $\operatorname{Re}[f(0)] = -1$, and suppose that there is a function $q : \mathbb{R} \to \mathbb{R}$ such that for all $(x, y) \in \mathbb{R}^2$, $\operatorname{Im}[f(x + iy)] = (y \cos x - x \sin x)q(y) - y$ and q(0) = 2.

2.a (10 pt) Show that q(y) satisfies yq''(y) + 2q'(y) - (y+2)q(y) = 0.

2.b (10 pt) Find an explicit formula for q(y).

2.c (Optional 10 bonus pts) Find an explicit formula for f(z).

Problem 2 for students with ID numbers: 49642, 64842, 69287, 40557, 53932

Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function such that $\operatorname{Re}[f(0)] = 2$, and suppose that there is a function $q : \mathbb{R} \to \mathbb{R}$ such that for all $(x, y) \in \mathbb{R}^2$, $\operatorname{Im}[f(x + iy)] = (y \cos x - x \sin x)q(y) + y$ and q(0) = -1.

2.a (10 pt) Show that q(y) satisfies yq''(y) + 2q'(y) - (y+2)q(y) = 0.

2.b (10 pt) Find an explicit formula for q(y).

2.c (Optional 10 bonus pts) Find an explicit formula for f(z).

$$\frac{Problem 2}{Group 1}$$

$$\frac{2.0}{Qroup 1}$$

$$\frac{2.$$

$$2 \cdot (\alpha = -(x \cdot \alpha + y \cdot s \cdot h \times) e^{y}$$

$$(b)$$

$$(x = -(cn \times + x \cdot s \cdot sn \times + y \cdot cn \times) e^{y}$$

$$V_{y} = (x = y = y = \int (u \times dy)$$

$$V = -\int (cn \times - x \cdot s \cdot n \times + y \cdot cn \times) e^{y} dy + h(x)$$

$$= -(cn \times - x \cdot s \cdot n \times) e^{y} + cn \times \int y e^{y} dy + h(x)$$

$$= -(cn \times - x \cdot s \cdot n \times + q \cdot cn \times) e^{y} + h(x)$$

$$= (x \cdot s \cdot n \times - q \cdot cn \times) e^{y} + h(x)$$

$$= (x \cdot s \cdot n \times + x \cdot cn \times + y \cdot s \cdot n \times) e^{y}$$

$$= h(x) = 0 = h(x) = h_{0} = 1$$

$$= h(x) = -(x \cdot cn \times + y \cdot s \cdot n \times) e^{y} + h$$

$$= h(x) = -(x \cdot cn \times + y \cdot s \cdot n \times) e^{y} + h$$

$$= h(x) = -(x \cdot cn \times + y \cdot s \cdot n \times) e^{y} + h$$

$$= h(x) = -(x \cdot cn \times + y \cdot s \cdot n \times) e^{y} + h$$

$$= h(x) = -(x \cdot cn \times + y \cdot s \cdot n \times) e^{y} + 1$$

$$= h(x) = -(x \cdot cn \times + y \cdot s \cdot n \times) e^{y} + 1$$

$$= h(x) = -x \cdot cn \times + i \cdot (x \cdot s \cdot n \times + y \cdot n \times) e^{y} + 1$$

$$\begin{array}{l} Problem 2 / Gromp 2 \\ \hline 2 \cdot q \quad U(x_{(1)}) = (Y \, G \, x - x \, S_{0}h \, x) g(Y) , \quad \nabla^{2} v = 0 \\ \hline v x = [-Y \, S_{0}h \, x - S_{0}h \, x - x \, C_{0}h \, x] g \\ \hline v x x = [-Y \, C_{0}h \, x - C_{0}h \, x - x \, S_{0}h \, x] g \\ \hline v y = (C_{0}h \, x) g + (Y \, C_{0}h \, x - x \, S_{0}h \, x) g' \\ \hline v y_{1} = (C_{0}h \, x) g' + (Q \, C_{0}h \, x - x \, S_{0}h \, x) g'' \\ \hline v y_{1} = (C_{0}h \, x) g' + (C_{0}h \, x) g' + (Y \, C_{0}h \, x - x \, S_{0}h \, x) g'' \\ \hline v y_{1} = (C_{0}h \, x) g' + (Y \, C_{0}h \, x - x \, S_{0}h \, x) g'' \\ \hline v y_{1} = (C_{0}h \, x) g' + (Y \, C_{0}h \, x - x \, S_{0}h \, x) g'' \\ \hline v y_{1} = (C_{0}h \, x) g' + (Y \, C_{0}h \, x - x \, S_{0}h \, x) g'' \\ \hline v y_{1} = (C_{0}h \, x) g' + (Y \, C_{0}h \, x - x \, S_{0}h \, x) g'' \\ \hline v y_{1} = (C_{0}h \, x) g' + (Y \, C_{0}h \, x - x \, S_{0}h \, x) g'' \\ \hline v y_{1} = C_{0}h \, x \left[-(Y + 2)g + 2g' + Y \, g''' \right] + \\ x \, S_{0}h \, x \left((q - g'') \right) = 0 \\ \hline C_{0}h \, x \, d x \, S_{0}h \, x \, arc \, d_{0}h \, und f \, ihdeform \, dut = 2 \\ Y \, q'' + 2g' - (Y + 2)g = 0 \qquad (1) \\ \hline d \quad g'' - g = 0 \qquad (2) \\ \hline 2.b \qquad (1) \, d(c) = 7 \quad Y \, g + 2g' - (Y + 2)g = 0 \\ = 7 \quad 2g' - 2g = 0 \\ = 7 \quad 2g' - 2g = 0 \\ = 9 \quad g(Y) = Ce^{Y} \quad c \in R \\ g(0) = 2 \quad = Y \quad c = 2 \quad = 7 \quad g(Y) = 2e^{Y} \quad c \in R \\ g(0) = 2 \quad = Y \quad c = 2 \quad = 7 \quad g(Y) = 2e^{Y} \quad c \in R \end{array}$$

$$\frac{2 \cdot c}{v} : (8)$$

$$\frac{v}{v} = 2(\gamma c_n x_{-} \times s_{in} x) e^{\gamma}$$

$$\frac{v}{v} = 2(-\gamma s_{in} x - s_{in} x - x c_n x) e^{\gamma}$$

$$\frac{v}{v} = 2(-\gamma s_{in} x - s_{in} x - x c_n x) e^{\gamma}$$

$$\frac{v}{v} = - u = -\int v_{x} d\gamma + h(x)$$

$$= u = 2\int (\gamma s_{in} x + s_{in} x + x c_n x) e^{\gamma} d\gamma + h(x)$$

$$= 2[s_{in} x \int \gamma e^{\gamma} d\gamma + (s_{in} x + x c_n x) e^{\gamma}] + h(x)$$

$$\frac{v}{v} e^{\gamma} - e^{\gamma} = (\gamma - i) e^{\gamma}$$

$$= 2(\gamma s_{in} x - s_{in} x + s_{in} x + x c_n x) e^{\gamma} + h(x)$$

$$= 2(\gamma s_{in} x + s_{in} x + s_{in} x) e^{\gamma} + h(x)$$

$$= 2(\gamma s_{in} x + s_{in} x) e^{\gamma} + h(x)$$

$$\frac{v}{v} = 2(c_{n} x + \gamma c_{n} x - x s_{in} x) e^{\gamma} + h'(x)$$

$$\frac{v}{v} = 2(c_{n} x + \gamma c_{n} x - x s_{in} x) e^{\gamma} + h'(x)$$

$$\frac{v}{v} = 2(c_{n} x + \gamma c_{n} x - x s_{in} x) e^{\gamma} + h'(x)$$

$$\frac{v}{v} = 2(c_{n} x + y c_{n} x - x s_{in} x) e^{\gamma} + h'(x)$$

$$\frac{v}{v} = 2(\gamma s_{in} x + x c_{n} x) e^{\gamma} + h \cdot R$$

$$u(s_{i}, s) = Re(f(s_{i})) = -1 \quad (z - 1) \quad (z - 1)$$

-

Problem 2 (9)
Group 3
$\frac{2\cdot \alpha}{2\cdot \alpha} \mathcal{V}(x,y) = (\gamma c_n x - x s_{in} x) q(y) + \gamma , \nabla^2 \vartheta = 0$
$v_{x} = [-\gamma \sin x - \sin x - x \cos x]q(y)$
$v_{XX} = \left[-\gamma c_{n} \times - c_{n} \times - c_{n} \times + \times S_{n} \times \right] q(\gamma)$
$v_{\gamma} = (c_{\gamma} \times)q + (\gamma c_{\gamma} \times - \times s_{i\gamma} \times)q' + 1$
$v_{yy} = c_{n} \times q' + (c_{n} \times)q' + (yc_{n} \times - \times \delta m \times)q''$
$\nabla^2 v = (\gamma c_n x - x Sin x) q' + 2(c_n x) q' +$
$-[(y+2)c_n x - x s_i h x]q = 0$
$\nabla v = 0 = 7$ Cn × [Y9" + 29' - (Y+2)9] +
$\times Sim \times [-q''+q] = 0$
× Sinx & cn × an linearly independent =>
$\gamma q'' + 2q' - (\gamma + 2)q = 0$ (1)
& q'' - q = 0 (2)
2.6 (1) $k(2) = 779 + 29' - (7 + 2)9 = 0$
=) $2q' - 2q = 0 =) q' = q$
=) g(y) = ce for some CER
y l

 $q(0) = -1 \xrightarrow{L} C = -1 =) q(y) = -e^{y}$

$$\frac{(10)}{9}$$

$$\frac{9 \cdot C}{9} = -(Y \cos x - x \sin x) e^{Y} + Y$$

$$= 1 \quad \Im_{x} = -(-Y \sin x - \sin x - x \cos x) e^{Y}$$

$$= (Y \sin x + \sin x + x \cos x) e^{Y}$$

$$\frac{1}{2} = -\Im_{x} = Y \quad u = \int (-\Im_{x})dY + h(x)$$

$$= -\int (Y \sin x + \sin x + x \cos x) e^{Y} dY + h(x)$$

$$= -\int (Y \sin x + \sin x - \sin x) e^{Y} dY + h(x)$$

$$\frac{1}{7e^{Y} - e^{Y}} \qquad e^{Y}$$

$$= (-Y \sin x + \sin x - \sin x) e^{Y} + h(x)$$

$$= (-Y \sin x - x \cos x) e^{Y} + h(x)$$

$$\frac{11}{9Y} = -(\cos x + \cos x) e^{Y} + h(x)$$

$$\frac{11}{9Y} = -(\cos x + y \cos x) e^{Y} + h(x)$$

$$= h'(x) = 1 = F \quad h(x) = x + \tilde{c} \quad fr \quad some \quad \tilde{c} \in \mathbb{R}$$

$$= f(x + iy) = -(Y \sin x + x \cos x) e^{Y} + x + \tilde{c}$$

$$u(o_{1}o) = \operatorname{Re}(f(o_{1})) = 2 \quad \exists Y \quad \tilde{c} = 2$$

$$\Rightarrow \quad f(x + iy) = -(Y \sin x + x \cos x) e^{Y} + x + 2 + \frac{1}{2} (-Y \cos x - x \sin x) e^{Y} + Y = 1$$

$$\Rightarrow \quad \int f(x) = -x \cos x + x + 2 + i(x \sin x) e^{Y} + y = -x e^{-x} + 2$$

$$= 1 \quad \widehat{F}(z) = -\overline{z} e^{-\frac{1}{2}} + \overline{z}$$

Math 303: Final Exam (Part 3) May 31, 2020

- This exam consists of five separate 30 minutes-long parts.

- Solve the problem(s) assigned to you. Otherwise you will not be getting any credit.

- Write your name and student ID number in the solution page to each problem.

- Take a photo of the solution page(s) for each problem and upload it to Blackboard as a single electronic file before the due time indicated in the assignment. In addition, send the same file via email to **amostafazadeh@ku.edu.tr** before or within the last three minutes after the end of the time given for each problem. Late submissions of the solution to the problems will not be taken into consideration.

Problem 3 for students with ID numbers: 40600, 49960, 54212, 60333, 64365, 64821

Use contour integration to evaluate $\int_0^\infty \frac{x^{2/3}}{x^2+3} dx$. (25 pts)

Warning: You are expected to give all the details of each step of the necessary calculations. Giving the final numerical value of the integral without the details of the calculations will not earn you any credit.

Problem 3 for students with ID numbers: 50127, 64558, 64869, 54238, 60581, 69720

Use contour integration to evaluate $\int_0^\infty \frac{x^{1/3}}{x^2+5} dx$. (25 pts)

Warning: You are expected to give all the details of each step of the necessary calculations. Giving the final numerical value of the integral without the details of the calculations will not earn you any credit.

Problem 3 for students with ID numbers: 49642, 64842, 69287, 40557, 53932

Use contour integration to evaluate $\int_0^\infty \frac{x^{1/3}}{x^2+7} dx$. (25 pts)

Warning: You are expected to give all the details of each step of the necessary calculations. Giving the final numerical value of the integral without the details of the calculations will not earn you any credit.

$$\frac{\Pr d \operatorname{Lim} 3}{\operatorname{I} = \int_{-\infty}^{\infty} \frac{2^{1}/3}{x^{2}+3} dx , \quad \stackrel{\text{fitti:=}}{=} \frac{2^{1}/3}{2^{2}+3}$$

$$\frac{1}{\operatorname{I} = \int_{-\infty}^{\infty} \frac{2^{1}/3}{x^{2}+3} dx , \quad \stackrel{\text{fitti:=}}{=} \frac{2^{1}/3}{2^{2}+3}$$

$$\frac{1}{\operatorname{I} = \int_{-\infty}^{\infty} \frac{2^{1}/3}{x^{2}+3} dx , \quad \stackrel{\text{fitti:=}}{=} \frac{2^{1}/3}{2^{2}+3}$$

$$\frac{1}{\operatorname{I} = \int_{-\infty}^{\infty} \frac{2^{1}/3}{x^{2}+3} dx , \quad \stackrel{\text{fitti:=}}{=} \frac{2^{1}/3}{2^{2}+3}$$

$$\frac{1}{\operatorname{I} = \int_{-\infty}^{\infty} \frac{2^{1}/3}{x^{2}+3} dx = I$$

$$\frac{1}{\operatorname{R} + \infty} \int_{-\infty}^{\infty} \frac{2^{1}/3}{x^{2}+3} \frac{2^{1}/3}{x^{2}+3} i \operatorname{R} e^{i\theta} d\theta = 0$$

$$\frac{1}{\operatorname{R} + \infty} \int_{-\infty}^{\infty} \frac{2^{1}/3}{x^{2}+4} \frac{2^{1}/3}{x^{2}+3} i \operatorname{R} e^{i\theta} d\theta = 0$$

$$\frac{1}{\operatorname{R} + \infty} \int_{-\infty}^{\infty} \frac{2^{1}/3}{x^{2}+4} \frac{2^{1}/3}{x^{2}+3} \frac{2^{1}/3}{x^{2}+3} \frac{2^{1}/3}{x^{2}+3}$$

$$\frac{1}{\operatorname{R} + \infty} \int_{-\infty}^{\infty} \frac{2^{1}/3}{x^{2}+4} \frac{2^{1}/3}{x^{2}+3} \frac{2^{1}/3}{x^{2}+3} \frac{2^{1}/3}{x^{2}+3} \frac{2^{1}/3}{x^{2}+3} \frac{2^{1}/3}{x^{2}+3}$$

$$= \int_{-\infty}^{1} \frac{1}{\operatorname{R} + 2^{1}/3} \frac{2^{1}/3}{x^{2}+3} \frac{2^{1}/3}{x^{2}$$

$$\begin{aligned} f(2) \\ f(12) \\ f(1$$

(1) &(2): (1+ $e^{\frac{i\pi}{3}}$) $I = \frac{\pi}{3^{1/6}}(1+e^{i\pi/3})$

2'46

=

$$=1 \qquad \boxed{I = \frac{\pi}{3^{11} \epsilon}}$$

$$\frac{P_{10} \pm l_{10} \cdot 3}{6r_{0}r_{1}^{2} \cdot 2 \cdot k \cdot 3} : I = \int_{0}^{\infty} \frac{x^{\frac{1}{3}}}{x^{\frac{1}{2}} + a} dx \quad a = \int_{-\pi}^{\pi} \frac{x^{\frac{3}{3}}}{x^{\frac{3}{2}} + a}$$

$$\frac{f_{1}(t_{1}) := \frac{2^{\frac{1}{3}}}{2^{\frac{1}{2}} + a}}{2^{\frac{1}{2}} + a}$$

$$\frac{f_{1}(t_{1}) := \frac{2^{\frac{1}{3}}}{2^{\frac{1}{2}} + a}}{2^{\frac{1}{2}} + a}$$

$$\frac{f_{1}(t_{1}) := \frac{2^{\frac{1}{3}}}{2^{\frac{1}{2}} + a}}{2^{\frac{1}{2}} + a}$$

$$\frac{f_{1}(t_{1}) := \frac{2^{\frac{1}{3}}}{2^{\frac{1}{2}} + a}}{2^{\frac{1}{3}} + i(c - \sqrt{x^{\frac{1}{2}} + c^{\frac{1}{2}}} \cdot c}$$

$$\frac{f_{1}(t_{1}) := \frac{2^{\frac{1}{3}}}{2^{\frac{1}{2}} + a}}{2^{\frac{1}{3}} + i(c - \sqrt{x^{\frac{1}{2}} + c^{\frac{1}{2}}} \cdot c}$$

$$\frac{f_{1}(t_{1}) := \frac{2}{2} + k(c - \sqrt{x^{\frac{1}{2}} + c^{\frac{1}{2}}} \cdot c}$$

$$\frac{f_{1}(t_{1}) := \frac{1}{2} + k(c - \sqrt{x^{\frac{1}{2}} + c^{\frac{1}{3}}} \cdot c}$$

$$\frac{f_{1}(t_{1}) := \frac{1}{2} + k(c - \sqrt{x^{\frac{1}{2}} + c^{\frac{1}{3}}} \cdot c}$$

$$\frac{f_{1}(t_{1}) := \frac{1}{2} + k(c - \sqrt{x^{\frac{1}{3}} + c^{\frac{1}{3}}} \cdot c}$$

$$\frac{f_{1}(t_{1}) := \frac{1}{2} + k(c - \sqrt{x^{\frac{1}{3}} + c^{\frac{1}{3}}} \cdot c}$$

$$\frac{f_{1}(t_{1}) := \frac{1}{2} + k(c - \sqrt{x^{\frac{1}{3}} + c^{\frac{1}{3}}} \cdot c}$$

$$\frac{f_{1}(t_{1}) := \frac{1}{2} + k(c - \sqrt{x^{\frac{1}{3}} + c^{\frac{1}{3}}} \cdot c}$$

$$\frac{f_{1}(t_{1}) := \frac{1}{2} + k(c - \sqrt{x^{\frac{1}{3}} + c^{\frac{1}{3}}} \cdot c}$$

$$\frac{f_{1}(t_{1}) := \frac{1}{2} + k(c - \sqrt{x^{\frac{1}{3}} + c^{\frac{1}{3}}} \cdot c}$$

$$\frac{f_{1}(t_{1}) := \frac{1}{2} + k(c - \sqrt{x^{\frac{1}{3}} + c^{\frac{1}{3}}} \cdot c}$$

$$\frac{f_{1}(t_{1}) := \frac{1}{2} + k(c - \sqrt{x^{\frac{1}{3}} + c^{\frac{1}{3}}} \cdot c}$$

$$\frac{f_{1}(t_{1}) := \frac{1}{2} + k(c - \sqrt{x^{\frac{1}{3}} + c^{\frac{1}{3}}} \cdot c}$$

$$\frac{f_{1}(t_{1}) := \frac{1}{2} + k(c - \sqrt{x^{\frac{1}{3}} + c^{\frac{1}{3}}} \cdot c}$$

$$\frac{f_{1}(t_{1}) := \frac{1}{2} + k(c - \sqrt{x^{\frac{1}{3}} + c^{\frac{1}{3}}} \cdot c}$$

$$\frac{f_{1}(t_{1}) := \frac{1}{2} + k(c - \sqrt{x^{\frac{1}{3}} + c^{\frac{1}{3}}} \cdot c}$$

$$\frac{f_{1}(t_{1}) := \frac{1}{2} + k(c - \sqrt{x^{\frac{1}{3}} + c^{\frac{1}{3}}} \cdot c}$$

$$\frac{f_{1}(t_{1}) := \frac{1}{2} + k(c - \sqrt{x^{\frac{1}{3}} + c^{\frac{1}{3}}} \cdot c}$$

$$\frac{f_{1}(t_{1}) := \frac{1}{2} + k(c - \sqrt{x^{\frac{1}{3}} + c^{\frac{1}{3}}} \cdot c}$$

$$\frac{f_{1}(t_{1}) := \frac{1}{2} + k(c - \sqrt{x^{\frac{1}{3}} + c^{\frac{1}{3}}} \cdot c}$$

$$\frac{f_{1}(t_{1}) := \frac{1}{2} + k(c - \sqrt{x^{\frac{1}{3}} + c^{\frac{1}{3}}} \cdot c}$$

$$\frac{f_{1}(t_{1}) := \frac{1}{2} + k(c - \sqrt{x^{\frac{1}{3}} + c^{\frac{1}{3}}} \cdot c$$

$$\frac{On C_{0}}{Im} \sum_{\substack{i=1 \\ i \neq j}} \frac{1}{2} = \lim_{\substack{i=1 \\ i \neq j}} \int_{\substack{i=1 \\ i \neq j}}^{\frac{1}{2}} \frac{\frac{i}{2}}{e^{2}} \frac{\frac{i}{2}}{e^{2}} \frac{\frac{i}{2}}{e^{2}} \frac{\frac{i}{2}}{e^{2}} \frac{1}{e^{2}} \frac{1}{e^$$

(14)

 $\lim_{x \to 1} (2 \pm i\sqrt{a}) f_{(2)} = \lim_{x \to 1} (2 \pm i\sqrt{a}) \frac{2^{1}(3)}{(2 - i\sqrt{a})(2 + i\sqrt{a})}$ 2-+±15a 2- ±: 50 $= \frac{(\pm i\sqrt{a})^{1/3}}{\pm 2i\sqrt{a}} = \pm \frac{(\pm i)^{1/3} a^{\frac{1}{6}}}{2ia^{\frac{1}{2}}} = \pm \frac{(\pm i)^{1/3}}{2ia^{1/3}}$

$$=1 \pm i\sqrt{q} \text{ are simple poles } d$$

$$Res(i\sqrt{q}) = \frac{i^{1/3}}{2iq^{1/3}} = \frac{e^{i\pi}}{2iq^{1/3}} = \frac{e^{i\pi}}{2iq^{1/3}} = \frac{e^{i\pi}}{2e^{i\pi/2}a^{1/3}} = \frac{e^{-i\pi/3}}{2q^{1/3}}$$

$$Res(-i\sqrt{q}) = -\frac{(-i)^{1/3}}{2iq^{1/3}} = -\frac{(e^{i\pi})^{1/3}}{2iq^{1/3}} = -\frac{e^{i\pi}}{2iq^{1/3}} = -\frac{e^{i\pi}}{2iq^{1/3}} = -\frac{e^{i\pi}}{2iq^{1/3}}$$

=)
$$\oint f_{12} d2 = 2\pi i \left(\frac{e^{-i\pi/3}}{2a^{1/3}} - \frac{1}{2a^{1/3}} \right) = \frac{\pi i}{a^{1/3}} \left(e^{-i\pi/3} - 1 \right)$$

$$\underbrace{(1) \ \& (2) : (1+e^{-\frac{i\pi}{3}}) \ I = \frac{\pi i}{\alpha^{1/3}} (e^{-i\pi/3} - 1)}_{\alpha^{1/3}} = \frac{\pi i}{\alpha^{1/3}} \left[\frac{e^{-i\pi/3}}{e^{-i\pi}} \left(\frac{e^{-i\pi/6}}{e^{-i\pi}} - \frac{e^{i\pi/6}}{e^{-i\pi}} \right) \right]$$

$$= \frac{\pi i}{\alpha^{1/3}} \left[\frac{-2i \operatorname{Sin}(\frac{\pi}{6})}{2 \operatorname{Cn}(\frac{\pi}{6})} \right] = \frac{\pi}{\alpha^{1/3}} \left(\frac{\frac{1}{2}}{\sqrt{3}} \right)$$

2

$$=\frac{\pi}{\sqrt{3}a^{1/3}}.$$

Math 303: Final Exam (Part 4) May 31, 2020

- This exam consists of five separate 30 minutes-long parts.

- Solve the problem(s) assigned to you. Otherwise you will not be getting any credit.
- Write your name and student ID number in the solution page to each problem.

- Take a photo of the solution page(s) for each problem and upload it to Blackboard as a single electronic file before the due time indicated in the assignment. In addition, send the same file via email to **amostafazadeh@ku.edu.tr** before or within the last three minutes after the end of the time given for each problem. Late submissions of the solution to the problems will not be taken into consideration.

Problem 4 for students with ID numbers: 40600, 49960, 54212, 60333, 64365, 64821

Let for all $x \in \mathbb{R}$, $\theta(x) := \begin{cases} 0 \text{ for } x < 0 \\ 1 \text{ for } x \ge 0 \end{cases}$, $f(x) := e^x \theta(1 - 4x^2)$, and $g(x) := e^{-2x} f'(x)$.

4.a (7 pts) Express g(x) in terms of the step function θ and the Dirac delta function δ . Simplify your response as much as possible.

4.b (10 pts) Let $\tilde{g}(k)$ be the Fourier transform of g(x). Find an explicit expression for $\tilde{g}(k)$ and simplify it as much as possible.

4.c (3 pts) Calculate $\tilde{g}(0)$.

Problem 4 for students with ID numbers: 50127, 64558, 64869, 54238, 60581, 69720

Let for all
$$x \in \mathbb{R}$$
, $\theta(x) := \begin{cases} 0 \text{ for } x < 0 \\ 1 \text{ for } x \ge 0 \end{cases}$, $f(x) := e^{-x}\theta(2 - x^2/2)$, and $g(x) := e^{x/2}f'(x)$.

4.a (7 pts) Express g(x) in terms of the step function θ and the Dirac delta function δ . Simplify your response as much as possible.

4.b (10 pts) Let $\tilde{g}(k)$ be the Fourier transform of g(x). Find an explicit expression for $\tilde{g}(k)$ and simplify it as much as possible.

4.c (3 pts) Calculate $\tilde{g}(0)$.

Problem 4 for students with ID numbers: 49642, 64842, 69287, 40557, 53932

Let for all
$$x \in \mathbb{R}$$
, $\theta(x) := \begin{cases} 0 \text{ for } x < 0 \\ 1 \text{ for } x \ge 0 \end{cases}$, $f(x) := e^{x/2}\theta(1 - x^2/4)$, and $g(x) := e^{-x/2}f'(x)$.

4.a (7 pts) Express g(x) in terms of the step function θ and the Dirac delta function δ . Simplify your response as much as possible.

4.b (10 pts) Let $\tilde{g}(k)$ be the Fourier transform of g(x). Find an explicit expression for $\tilde{g}(k)$ and simplify it as much as possible.

4.c (3 pts) Calculate $\tilde{g}(0)$.

Problem 4	(15)	
Group 1		
4.0 $f = e$	$\times \otimes (1-4 \times^2)$	
<i>f</i> ′=	$e^{\times} \Theta(1-4x^2) + e^{\times}(-8x) \delta(1-4x^2)$	• • • • • • • • • • • • • • • • • • •
	e × [0(1-4x2) - 8x8(1-4x2)]	
$h(x) = 4x^2 - 1$	=, $S(1-4x^2) = S(4x^2-1) = S(1-4x^2)$	h(x))
$h'(x) = 8 \times$		(
h(x) = 0 = 0 $h(z) = \pm 4$	$x = \pm \frac{1}{2}$ (-) $\delta(1-x^2) = \frac{\delta(x-\frac{1}{2})}{ f_0(\frac{1}{2}) } +$	$\frac{\delta(x+z)}{1h(-z)}$
$\delta(1-4x^2) = -\frac{1}{2}$	$x = \pm \frac{1}{2} \stackrel{(}{=} 8(1 - x^{2}) = \frac{\delta(x - \frac{1}{2})}{1 + \frac{1}{2}} + \frac{\delta(x + \frac{1}{2})}{1 + \frac{1}{2}} = \frac{1}{4} \left[\delta(x - \frac{1}{2}) + \frac{\delta(x + \frac{1}{2})}{4} + \frac{1}{4} + $	$\delta(x+\frac{1}{2})]$
	$\{0(1-4x^2) - 2x E\delta(x-\frac{1}{2}) + \delta(x+\frac{1}{2})\}$	
$=e^{\times}$	$\left[\Theta(1-4x^{2}) - \delta(x-\frac{1}{2}) + \delta(x+\frac{1}{2})\right]$	
$=7 9 = e^{-2x} f$	$\begin{aligned} \hat{c}x_1 &= e^{-x} \left[\Theta(1 - 4x^2) - \delta(x - \frac{1}{2}) + \delta(x - \frac{1}{2}) \right] \\ &= e^{-x} \Theta(1 - 4x^2) - e^{1/2} \delta(x - \frac{1}{2}) \\ \int e^{-iux} g(x) dx \end{aligned}$	$(x + \frac{1}{2})]$ + $e^{\sqrt{2}} \delta(x + \frac{1}{2})$
$=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e$	$(-iu-1) \times [\Theta(1-4x^2) - \delta(x-\frac{1}{2}) + \delta(x+\frac{1}{2}) + \delta(x+\frac{1}{2})]$	x6 [[; +
$=\frac{1}{\sqrt{2\pi}}\left[\int_{-\frac{1}{2}}^{\frac{1}{2}}$	-ci(x+1)x - ci(x+1)) + ci(x+1)x	4 +1) 2]
	$-\frac{(iu+i)\times \frac{1}{2}}{(iu+i)} - \frac{iu+i}{2} + \frac{(u+i)}{2}} - \frac{(u+i)}{2} + \frac{(u+i)}{2} - \frac{(u+i)}{2} + \frac{1}{(u+i)} $	
= JZA [-	$(1+\frac{1}{(n+1)})e^{-\frac{i(n+1)}{2}}+(1+\frac{1}{(n+1)})e^{-\frac{i(n+1)}{2}}$	2 2]

$$(16)$$

$$= 2 \int_{0}^{\infty} c_{N} = \frac{1}{\sqrt{2\pi}} (1 + \frac{1}{c_{N+1}}) (c^{-\frac{1}{2}} - e^{-\frac{1}{2}})$$

$$= \sqrt{\frac{2}{\pi}} (1 + \frac{1}{c_{N+1}}) \delta_{N} h \left[\frac{c_{N+1}}{2} \right]$$

$$= \sqrt{\frac{2}{\pi}} (1 + \frac{1}{c_{N+1}}) \delta_{N} h \left[\frac{c_{N+1}}{2} \right]$$

$$\frac{4 \cdot c}{9} (0) = \sqrt{\frac{2}{\pi}} 2 \delta_{N} h \left(\frac{1}{2}\right).$$

$$\frac{4 \cdot c}{9} (0) = \sqrt{\frac{2}{\pi}} 2 \delta_{N} h \left(\frac{1}{2}\right).$$

$$\frac{4 \cdot c}{9} (0) = \sqrt{\frac{2}{\pi}} 2 \delta_{N} h \left(\frac{1}{2}\right).$$

$$\frac{4 \cdot c}{9} (0) = \sqrt{\frac{2}{\pi}} 2 \delta_{N} h \left(\frac{1}{2}\right).$$

$$\frac{4 \cdot c}{9} (0) = \sqrt{\frac{2}{\pi}} 2 \delta_{N} h \left(\frac{1}{2}\right).$$

$$\frac{4 \cdot c}{9} (0) = \sqrt{\frac{2}{\pi}} 2 \delta_{N} h \left(\frac{1}{2}\right).$$

$$\frac{4 \cdot c}{9} (0) = \sqrt{\frac{2}{\pi}} 2 \delta_{N} h \left(\frac{1}{2}\right).$$

$$\frac{4 \cdot c}{9} (0) = \sqrt{\frac{2}{\pi}} \left[\theta(2 - \frac{x^{2}}{2}) - x e^{-\frac{x}{2}} \delta(2 - \frac{x^{2}}{2}) \right]$$

$$= -e^{-\frac{x}{2}} \left[\theta(2 - \frac{x^{2}}{2}) + x \delta(2 - \frac{x^{2}}{2}) \right]$$

$$\frac{1}{2} \left[\delta(x - 2) + \delta(x + 2) \right]$$

$$\frac{1}{2} \left[\delta(x - 2) + \delta(x + 2) \right]$$

$$\frac{1}{2} \left[\delta(x - 2) + \delta(x + 2) \right]$$

$$\frac{1}{2} \left[\delta(x - 2) + \delta(x + 2) \right]$$

$$\frac{1}{2} \left[\theta(2 - \frac{x^{2}}{2}) + \delta(x - 2) - \delta(x + 2) \right]$$

$$\frac{1}{2} \left[\theta(2 - \frac{x^{2}}{2}) + \delta(x - 2) - \delta(x + 2) \right]$$

$$\frac{1}{2} \left[e^{-\frac{x}{2}} \delta(2 - \frac{x^{2}}{2}) - e^{-\frac{1}{2}} \delta(x - 2) + e^{\delta(x + 2)} \right]$$

$$\frac{1}{2} \left[\frac{e^{-\frac{x}{2}}}{\sqrt{2\pi}} \int_{-\frac{x}{2}}^{\infty} e^{-it_{N}} \left[-e^{-\frac{x}{2}} \theta(2 - \frac{x^{2}}{2}) - \frac{1}{2} \delta(x - 2) + e^{\delta(x + 2)} \right] dx$$

$$\frac{1}{2} \int_{0}^{\infty} (c_{N}) = \frac{1}{\sqrt{2\pi}} \int_{-\frac{x}{2}}^{\infty} e^{-it_{N}} \left[-e^{-\frac{x}{2}} \theta(2 - \frac{x^{2}}{2}) - \frac{1}{2} \delta(x - 2) + e^{\delta(x + 2)} \right] dx$$

$$\frac{1}{2} \int_{0}^{\infty} (c_{N}) = \frac{1}{\sqrt{2\pi}} \int_{-\frac{x}{2}}^{\infty} e^{-it_{N}} \left[-e^{-\frac{x}{2}} \theta(2 - \frac{x^{2}}{2}) - \frac{1}{2} \delta(x - 2) + e^{\delta(x + 2)} \right] dx$$

$$\frac{1}{2} \int_{0}^{\infty} (c_{N}) = \frac{1}{\sqrt{2\pi}} \int_{-\frac{x}{2}}^{2} e^{-(i_{N} + \frac{1}{2})x} \right|_{-\frac{x}{2}}^{2} + e^{2i_{N} + 1} - e^{-2i_{N} + 1} \right]$$

(17)

$$= \sum_{n=1}^{\infty} \widehat{\varphi}(u_{n}) = \frac{1}{42\pi} \left\{ \left(\frac{1}{cu_{k} + \frac{1}{4}} - 1 \right) e^{-(2iu_{k}+1)} - \left(\frac{1}{cu_{k} + \frac{1}{2}} - 1 \right) e^{2iu_{k}+1} \right\}$$

$$= \frac{1}{\sqrt{2\pi}} \left(1 - \frac{1}{cu_{k} + \frac{1}{2}} \right) \left(e^{2iu_{k}+1} - e^{-(2iu_{k}+1)} \right)$$

$$= \sqrt{\frac{\pi}{\pi}} \left(1 - \frac{1}{cu_{k} + \frac{1}{2}} \right) \sum_{n=1}^{\infty} h\left(2iu_{k} + 1 \right)$$

$$\frac{4.c}{9} \left(9 \right) = \sqrt{\frac{2}{\pi}} \left(1 - 2 \right) \sum_{n=1}^{\infty} h\left(2iu_{k} + 1 \right)$$

$$\frac{4.c}{9} \left(9 \right) = \sqrt{\frac{2}{\pi}} \left(1 - 2 \right) \sum_{n=1}^{\infty} h\left(2iu_{k} + 1 \right)$$

$$\frac{4.c}{9} \left(9 \right) = \sqrt{\frac{2}{\pi}} \left(1 - 2 \right) \sum_{n=1}^{\infty} h\left(2iu_{k} + 1 \right)$$

$$\frac{4.c}{9} \left(9 \right) = \sqrt{\frac{2}{\pi}} \left(1 - 2 \right) \sum_{n=1}^{\infty} h\left(2iu_{k} + 1 \right)$$

$$\frac{4.c}{9} \left(9 \right) = \sqrt{\frac{2}{\pi}} \left(1 - 2 \right) \sum_{n=1}^{\infty} h\left(2iu_{k} + 1 \right)$$

$$\frac{4.c}{9} \left(9 \right) = \sqrt{\frac{2}{\pi}} \left(1 - 2 \right) \sum_{n=1}^{\infty} h\left(2iu_{k} + 1 \right)$$

$$\frac{4.c}{9} \left(9 \right) = \sqrt{\frac{2}{\pi}} \left(1 - 2 \right) \sum_{n=1}^{\infty} h\left(2iu_{k} + 1 \right)$$

$$\frac{4.c}{9} \left(9 \right) = \sqrt{\frac{2}{\pi}} \left(1 - 2 \right) \sum_{n=1}^{\infty} h\left(2iu_{k} + 1 \right)$$

$$\frac{4.c}{9} \left(2iu_{k} + 1 \right) \sum_{n=1}^{\infty} h\left(2iu_{k} + 1 \right)$$

$$\frac{4.c}{9} \left(2iu_{k} + 1 \right) \sum_{n=1}^{\infty} h\left(2iu_{k} + 1 \right)$$

$$\frac{4.c}{9} \left(2iu_{k} + 1 \right) \sum_{n=1}^{\infty} h\left(2iu_{k} + 1 \right)$$

$$\frac{4.c}{9} \left(2iu_{k} + 1 \right) \sum_{n=1}^{\infty} h\left(2iu_{k} + 1 \right)$$

$$\frac{4.c}{9} \left(2iu_{k} + 1 \right) \sum_{n=1}^{\infty} h\left(2iu_{k} + 1 \right)$$

$$\frac{4.c}{9} \left(2iu_{k} + 1 \right) \sum_{n=1}^{\infty} h\left(2iu_{k} + 1 \right)$$

$$\frac{4.c}{9} \left(2iu_{k} + 1 \right) \sum_{n=1}^{\infty} h\left(2iu_{k} + 1 \right) \sum_{n=1}^{\infty} h\left(2iu_{k} + 1 \right)$$

$$\frac{4.c}{9} \left(2iu_{k} + 1 \right) \sum_{n=1}^{\infty} h\left(2i$$

(18)

$$\frac{4.6}{9(n)} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ihx} \left\{ \frac{1}{2} \theta(1 - \frac{x^2}{4}) - \delta(x - 2) + \delta(x + 2) \right\} dx$$

$$=) \quad \widehat{\mathcal{G}}(u) = \frac{1}{\sqrt{2\pi}} \begin{cases} \frac{1}{2} \int_{-2}^{2} e^{-iux} dx - e^{-2iu} + e^{2iu} \\ = \frac{1}{\sqrt{2\pi}} \left[\frac{1}{2} \left(\frac{e^{-ikx}}{-iu} \right)^{2} + e^{2iu} - e^{-2iu} \right] \\ = \frac{1}{\sqrt{2\pi}} \left[\frac{e^{-2iu}}{-2iu} + \frac{e^{2iu}}{2iu} + e^{2iu} - e^{-2iu} \right] \\ = \frac{1}{\sqrt{2\pi}} \left[\frac{e^{-2iu}}{-2iu} + \frac{e^{2iu}}{2iu} + e^{-e^{-2iu}} \right] \\ = \frac{1}{\sqrt{2\pi}} \left[(1 + \frac{1}{2iu}) e^{2iu} - (1 + \frac{1}{2iu}) e^{-2iu} \right] \\ = \frac{1}{\sqrt{2\pi}} \left(1 + \frac{1}{2iu} \right) (e^{2iu} - e^{-2iu}) \\ = \sqrt{\frac{2}{\pi}} \left((1 + \frac{1}{2iu}) \sin(2u) \right) \\ = \sqrt{\frac{2}{\pi}} \left((1 + \frac{1}{2iu}) \sin(2u) \right) \end{cases}$$

4.0

g(0) is not defined but.

$$\lim_{n\to\infty} \tilde{g}_{ch} = \sqrt{\frac{2}{\pi}}$$

Math 303: Final Exam (Part 5) May 31, 2020

- This exam consists of five separate 30 minutes-long parts.

- Solve the problem(s) assigned to you. Otherwise you will not be getting any credit.

- Write your name and student ID number in the solution page to each problem.

- Take a photo of the solution page(s) for each problem and upload it to Blackboard as a single electronic file before the due time indicated in the assignment. In addition, send the same file via email to **amostafazadeh@ku.edu.tr** before or within the last three minutes after the end of the time given for each problem. Late submissions of the solution to the problems will not be taken into consideration.

Problem 5 for students with ID numbers: 40600, 49960, 54212, 60333, 64365, 64821

Use the method of Fourier transform to find a particular solution of the following forth order differential equation:

$$y^{(4)}(x) - y'(x) - 4y(x) = \sin(2x).$$
 (20 pts)

You are expected to simplify this solution as much as possible and express it as a manifestly real-valued function of x.

Problem 5 for students with ID numbers: 50127, 64558, 64869, 54238, 60581, 69720

Use the method of Fourier transform to find a particular solution of the following forth order differential equation:

$$y^{(4)}(x) + y'(x) - 4y(x) = \cos(2x).$$
 (20 pts)

You are expected to simplify this solution as much as possible and express it as a manifestly real-valued function of x.

Problem 5 for students with ID numbers: 49642, 64842, 69287, 40557, 53932

Use the method of Fourier transform to find a particular solution of the following forth order differential equation:

$$y^{(4)}(x) + 4y'(x) - y(x) = 4\sin(x).$$
 (20 pts)

You are expected to simplify this solution as much as possible and express it as a manifestly real-valued function of x.

Problem 5

$$\frac{Group 1}{\tilde{Y}(x) - \tilde{Y}(x) - 4\tilde{Y}(x)} = Sin(2x)$$

$$\tilde{\tilde{Y}}(u) := \tilde{F}\{\tilde{Y}(x)\} \stackrel{L}{\longrightarrow} (\tilde{c}k)^{h} \tilde{\tilde{Y}} - (\tilde{c}u)\tilde{\tilde{Y}} - 4\tilde{\tilde{Y}} = \tilde{F}\{\tilde{\delta}(u)(2x)\}$$

$$=) (k^{4} - \tilde{c}u + 4)\tilde{\tilde{Y}}(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} \left[\frac{e^{2ix} - e^{-2ix}}{2i} \right] dx$$

$$\frac{1}{2i} \int_{-\infty}^{\infty} \left[e^{-i(cu-2)x} - e^{-i(cu+2)x} \right] dx$$

$$2\pi \left[\delta(u-2) - \delta(u+2) \right]$$

=)
$$\overline{Y_{cu}} = -\sqrt{\frac{\pi}{2}} \left[\frac{\delta(u-2) - \delta(u+2)}{\kappa^4 - (u+4)} \right]$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{iux} \left\{ -\sqrt{\frac{\pi}{2}} i \left[\frac{\delta(u-z) - \delta(u+z)}{\kappa^{4} - iu + 4} \right] \right\} du$$

$$= -\frac{i}{2} \left[\frac{e^{2ix}}{i6 - 2i + 4} - \frac{e^{-2ix}}{i6 + 2i + 4} \right]$$

$$= -\frac{i}{4} \left(\frac{e^{2ix}}{i0 - i} - \frac{e^{-2ix}}{i0 + i} \right)$$

$$= -\frac{i}{4} \left[\frac{(10 + i)e^{2ix} - (10 - i)e^{-2ix}}{100 + 4} \right]$$

$$= -\frac{1}{4} \left[\frac{10(e^{2ix} - e^{-2ix}) + i(e^{2ix} + e^{-2ix})}{101} \right]$$

$$= \frac{1}{202} \left[10 \, \sin(2x) + Cn(2x) \right]$$

Problem 5

$$\frac{6romp2}{\tilde{Y}(x)-\tilde{Y}(x)-4Y(x)} = Cn(2x)$$

$$\tilde{Y}(x)-\tilde{Y}(x)-4Y(x) = Cn(2x)$$

$$\tilde{Y}(u) = \tilde{F}_{2}^{2}Y(x)^{2} = \tilde{Y}(u)^{4}\tilde{Y}(u) - iu\tilde{Y}(u) - 4\tilde{Y}(u) = \tilde{F}_{2}^{2}Cn(2x)^{2}$$

$$=) (k^{4} - ik - 4) \tilde{Y}_{ch} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} \frac{1}{2} (e^{2ix} + e^{-2ix}) dx$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} (Le^{-i(ch-2)x} - i(ch+2)) dx$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} (Le^{-i(ch-2)x} + e^{-i(ch+2)}) dx$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} (Le^{-i(ch-2)x} + \delta(ch+2)) dx$$

$$= \sum_{n=1}^{\infty} \overline{Y_{cu}} = \sqrt{\frac{\pi}{2}} \left[\frac{8cu-2}{4} + 8cu+2}{4cu-4u} \right]$$

$$= \sum_{n=1}^{\infty} \frac{1}{\sqrt{2n}} \sum_{n=0}^{\infty} c^{\frac{1}{2}u \times \sqrt{\frac{\pi}{2}}} \left[\frac{8cu-2}{4} + \frac{8cu+2}{4} \right] dx$$

$$= \frac{1}{2} \left[\frac{e^{\frac{2}{16}}}{16-2i-4} + \frac{e^{-2ix}}{16+2i-4} \right]$$

$$= \frac{1}{4} \left(\frac{e^{2ix}}{6-i} + \frac{e^{-2ix}}{6+i} \right)$$

$$= \frac{1}{4} \left[\frac{(6+i)e^{2ix}}{34+i} + \frac{(6-i)e^{-2ix}}{34+i} \right]$$

$$= \frac{1}{4} \left[\frac{6(e^{2ix} + e^{-2ix}) + i(e^{2ix} - e^{-2ix})}{34+i} \right]$$

$$= \frac{1}{44} \left[\frac{6cn(2x) - 5in(2x)}{34+i} \right]$$

$$= \overline{Y}(\kappa) = -\sqrt{\frac{\pi}{2}} \left[\frac{\delta(\kappa-1) - \delta(\kappa+1)}{\kappa^4 + 4(\kappa-1)} \right]$$

$$= 1 \ \gamma(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (-\sqrt{\frac{\pi}{2}}) i \left[\frac{\delta(u-1) - \delta(u+1)}{u^{4} + 4(u-1)} \right] e^{iux} du$$

$$= -\frac{i}{2} \left[\frac{e^{ix}}{1 + 4(i-1)} - \frac{e^{ix}}{1 - 4(i-1)} \right]$$

$$= -\frac{1}{8} \left(e^{ix} + e^{-ix} \right)$$

$$= -\frac{C_{n}x}{4}.$$