Math 208, Spring 2013, Quiz # 4

You have 40 minutes.

Name, Last Name Student TD Number Signature

Problem 1 (10 points) Give the definition or precise statement of the following.

1.a) A limit point of a subset A of R™:

1.b} A continuously differentiable function f: R? — R:

1.c) The directional derivative of a function f : R" — R in the direction p af a point x:

1.d} Mean-Value Theorem for a function f: @ — R where O is an open subset of ™



Problem 2 (6 points) Let n € N and A € R" be such that every limit point of A belongs to A.
Show that A is closed.
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Problem 3 (6 points) Let f : R? -3 R be a function defined on R? such that for all (x,y) € R?,
[f(z,y)] < 2* + 32 Show that f has first order partial derivatives at (0,0).
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Problem 4 (8 points) Let n € N, f : R" — R be a continnously differentiable function, x € R”,
p € R"\ {0}, and o € R\ {0}. Show that

of
d(ap)

(x) = av%(x).
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