Math 208, Spring 2013, Quiz # 4

You have 40 minutes.

Name, Last Name	Student ID Number	Signature
Problem 1 (10 points) Give the defi	inition or precise statement of the fo	ollowing.
1.a) A limit point of a subset A of I	\mathbb{R}^n ;	
1.b) A continuously differentiable fu	unction $f: \mathbb{R}^n \to \mathbb{R}$:	
1.c) The directional derivative of a	function $f: \mathbb{R}^n \to \mathbb{R}$ in the direction	n p at a point x:
1.d) Mean-Value Theorem for a fun-	ction $f: \mathcal{O} \to \mathbb{R}$ where \mathcal{O} is an oper	n subset of \mathbb{R}^n :

Problem 2 (6 points) Let $n \in \mathbb{N}$ and $A \subseteq \mathbb{R}^n$ be such that every limit point of A belongs to A. Show that A is closed.

Let X_n be a conveyent requerce M A and let $X_i = 1 lm X_n$ shoe $X_n \in A$ A and $X_n \in A$ A and $X_n \in A$ A and A are are done. If $X_n \neq X$ for all n then by definition $X_n \in A$ for all $X_n \in A$ contains $X_n \in A$ and $X_n \in A$ are a limit point? Since A contains $X_n \in A$ and $X_n \in A$ are all $X_n \in A$ are all $X_n \in A$ and $X_n \in A$ are all $X_n \in A$ are all $X_n \in A$ and $X_n \in A$ are

Problem 3 (6 points) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function defined on \mathbb{R}^2 such that for all $(x, y) \in \mathbb{R}^2$, $|f(x, y)| \leq x^2 + y^2$. Show that f has first order partial derivatives at (0, 0).

We first show that

I'm f(Q+t_0) - f(Q_0)

Exot. Let to be a sequence of real number in 18/63

converging to O. Then

$$\left| f(Q+t_0) - f(Q_0) \right| = \left| f(0+t_0,0) - 0 \right|$$
Then

$$\left| f(Q+t_0) - f(Q_0) \right| = \left| f(0+t_0,0) - 0 \right|$$
Then

Since $|f(0+t_0) - f(Q_0)| = \left| f(0+t_0,0) - 0 \right|$
Then

$$\left| f(0+t_0) - f(Q_0) - f(Q_0) - Q_0 \right|$$
With respect to X

There is how first order partial demants of (Q_0).

Here is how first order partial demants of (Q_0).

Similarly, you can prove that I has partial demants of the partial demants of the partial demants.

Problem 4 (8 points) Let $n \in \mathbb{N}$, $f : \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable function, $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{p} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$, and $\alpha \in \mathbb{R} \setminus \{\mathbf{0}\}$. Show that

By the directoral denotes theorem

$$\frac{\partial f}{\partial (\alpha p)}(x) = \alpha \frac{\partial f}{\partial p}(x).$$
By the directoral denotes theorem

$$\frac{\partial f}{\partial (\alpha p)}(x) = \sum_{i=1}^{N} \alpha p_i \frac{\partial f}{\partial x_i}(x) \quad \text{where} \quad p = (p_{1,2-1}p_1)$$
The lost term equals to

$$\alpha \stackrel{\frown}{=} p_i \frac{\partial f}{\partial x_i}(x) = \alpha \frac{\partial f}{\partial p}(x)$$
which completes the proof

.

•