Math 103: Midterm Exam # 2

Spring 2007

• Write your name and Student ID number in the space provided below and sign.

Name, Last Name:	
ID Number:	
Signature:	

- You have <u>90 minutes</u>.
- You may use any statement which has been proven in class, except for the cases where you are asked to reproduce the proof of that statement.
- You may ask any question about the exam within the first 10 minutes. After this time for any question you may want to ask 5 points will be deduced from your grade (You may or may not get an answer to your question(s).)
- (Optional) Grade your own work out of 100. Record your estimated grade here:

Estimated Grade:

If your expected grade and actual grade will turn out to differ by 9 points or less, you will be given the highest of the two.

To be filled by the grader:

Actual Grade:	
Adjusted Grade:	

Problem 1. Give the statement of

1.a) Zorn's Lemma (5 points)

1.b) Well-ordering Axiom. (5 points)

Problem 2. Let $R \subseteq \mathbb{N}^2 \times \mathbb{N}^2$ be defined by $R = \{((a, b), (c, d)) \in \mathbb{N}^2 \times \mathbb{N}^2 | a + d = b + c\}$. Prove that R is an equivalence relation. (15 points)

Note: You may use all the arithmetic properties of $\mathbb N$ without proving them.

Problem 3. Let A, B, C be nonempty sets, $R \subseteq A \times B$ and $S \subseteq B \times C$ be relations.

3.a) Prove that $Dom(S \circ R) = R^{-1}(Dom(S))$. (15 points)

3.b) Prove that $\operatorname{Ran}(S \circ R) = S(\operatorname{Ran}(R))$. (10 points)

Problem 4. Let (A, \preccurlyeq) be a poset and $B \subseteq A$.

4.a) Give the definition of the supremum of B in A. (5 points)

4.b) Prove that the supremum of B in A is unique. (10 points)

Problem 5. Let A, B be nonempty sets, $f : A \to B$ be a function, and $\{C_{\gamma}\}_{\gamma \in G}$ be a collection of subsets of B that are labelled by the element of an indexing set G. Prove that

$$\bigcap_{\gamma \in G} f^{-1}(C_{\gamma}) \subseteq f^{-1}(\bigcap_{\gamma \in G} C_{\gamma}).$$
 (15 points)

Problem 6. Let \mathbb{N} denote the set of natural numbers and $\mathbb{Z}^+ := \{n \in \mathbb{N} | n \neq 0\}.$

6.a) Prove that \mathbb{N} is equivalent to \mathbb{Z}^+ . (15 points)

6.b) Use 5.a to show that \mathbb{N} is not a finite set. (5 points)