Math 103: Midterm Exam \# 2

- Write your name and Student ID number in the space provided below and sign.

Name, Last Name:	
ID Number:	
Signature:	

- You have 90 minutes.
- You may use any statement which has been proven in class, except for the cases where you are asked to reproduce the proof of that statement.
- You may ask any question about the exam within the first 10 minutes. After this time for any question you may want to ask 5 points will be deduced from your grade (You may or may not get an answer to your question(s).)
- (Optional) Grade your own work out of 100 . Record your estimated grade here:

Estimated Grade:

If your expected grade and actual grade will turn out to differ by 9 points or less, you will be given the highest of the two.

To be filled by the grader:

Actual Grade:	
Adjusted Grade:	

Problem 1. Give the statement of
1.a) Zorn's Lemma (5 points)
1.b) Well-ordering Axiom. (5 points)

Problem 2. Let $R \subseteq \mathbb{N}^{2} \times \mathbb{N}^{2}$ be defined by $R=\left\{((a, b),(c, d)) \in \mathbb{N}^{2} \times \mathbb{N}^{2} \mid a+d=b+c\right\}$. Prove that R is an equivalence relation. (15 points)

Note: You may use all the arithmetic properties of \mathbb{N} without proving them.

Problem 3. Let A, B, C be nonempty sets, $R \subseteq A \times B$ and $S \subseteq B \times C$ be relations.
3.a) Prove that $\operatorname{Dom}(S \circ R)=R^{-1}(\operatorname{Dom}(S))$. (15 points)
3.b) Prove that $\operatorname{Ran}(S \circ R)=S(\operatorname{Ran}(R))$. (10 points)

Problem 4. Let (A, \preccurlyeq) be a poset and $B \subseteq A$.
4.a) Give the definition of the supremum of B in A. (5 points)
4.b) Prove that the supremum of B in A is unique. (10 points)

Problem 5. Let A, B be nonempty sets, $f: A \rightarrow B$ be a function, and $\left\{C_{\gamma}\right\}_{\gamma \in G}$ be a collection of subsets of B that are labelled by the element of an indexing set G. Prove that

$$
\bigcap_{\gamma \in G} f^{-1}\left(C_{\gamma}\right) \subseteq f^{-1}\left(\bigcap_{\gamma \in G} C_{\gamma}\right) . \quad \quad \quad(15 \text { points })
$$

Problem 6. Let \mathbb{N} denote the set of natural numbers and $\mathbb{Z}^{+}:=\{n \in \mathbb{N} \mid n \neq 0\}$.
6.a) Prove that \mathbb{N} is equivalent to \mathbb{Z}^{+}. (15 points)
6.b) Use 5.a to show that \mathbb{N} is not a finite set. (5 points)

