Salutions.

Math 103: Quiz # 8 Fall 2007

• Write your r

	Name, Last Name:			
	ID Number:			
	Signature:			
• You have 50	minutes.			
	e any statement which has been roduce the proof of that stateme		cept for the c	ases where you are
question you get an answ	k any question about the quiz we may want to ask 5 points will be to your question(s).)	be deduced from y		
	ition of the following terms.	Sei	the	book.
1.a) a sequence i	in a set: (5 points)			
1.a) a sequence i	in a set: (5 points)			
	in a set: (5 points) t real sequence: (5 points)			
	t real sequence: (5 points)			

1.e) equivalent sets: (5 points)

2. Let $s: \mathbb{Z}^+ \to \mathbb{R}$ be a real sequence. Prove that if the series $\sum_{n=1}^{\infty} s_n$ converges, then $s_n \to 0$. (25 points)

3. Let $s, t : \mathbb{Z}^+ \to \mathbb{R}$ be convergent real sequences and $u : \mathbb{Z}^+ \to \mathbb{R}$ be the real sequence defined by: $\forall n \in \mathbb{Z}^+$, $u_n := s_n + t_n$. Prove that if $s_n \to 1$ and $t_n \to -1$, then (u_n) converges to zero. (25 points)

 $S_{N-1} = 1$ $\forall \in \in \mathbb{R}^{+}$, $\exists N_{1} \in \mathbb{Z}^{+}$, $\forall n \in \mathbb{Z}^{+}$, $(n), N_{1} = 1$ $|S_{N-1}| \neq \in \mathbb{R}^{+}$, $\exists N_{2} \in \mathbb{Z}^{+}$, $\forall m \in \mathbb{Z}^{+}$, $(m), N_{2} = 1$ $|t_{m+1}| \neq \in \mathbb{Z}^{+}$ $\forall \in \in \mathbb{R}^{+}$, $\exists t \in \mathbb{Z}^{+}$, $\exists t \in \mathbb{Z}$

=> ISp-11 < E, 1 Itp+11 < E2

=> $|u_{p}| = |s_{p+1}| = |s_{p-1}| + |t_{p+1}| \le |s_{p-1}| + |t_{p+1}| + |t_{p+1}| \le |s_{p-1}| + |t_{p+1}| + |t_$

This prom un to.

4. Let A, B, C be sets. Show that in general $A \sim B$ does not imply $A \cup C \sim B \cup C$ (25 points)

Let $A:=\{13\}$, $B:=\{23\}$ and $C:=\{23\}$ Clear $A\cup C=\{1,23\}=I_2$, $B\cup C=\{23\}$ So $B\cup C\subseteq I_2=1$ then is no onto function $f:B\cup C\to I_2=1$ then is no bijects $f:B\cup C\to I_2=1$ then is no $f:B\cup C\to I_2=1$ then

is felse in general.