Solutions

Math 103: Quiz # 6

Fall 2007

• Write your name and Student ID number in the space provided below and sign.

Name, Last Name:	
ID Number:	
Signature:	

- You have 50 minutes.
- You may use any statement which has been proven in class, except for the cases where you are asked to reproduce the proof of that statement.
- You may ask any question about the quiz within the first 5 minutes. After this time for any question you may want to ask 5 points will be deduced from your grade (You may or may not get an answer to your question(s).)
- 1. Give the definition of the following terms.

See the book.

1.a) well-defined relation: (5 points)

1.b) one-to-one function: (5 points)

1.c) onto function: (5 points)

1.d) bijection: (5 points)

- **2.** Let A, B, C be sets and $f: A \to B$ and $g: B \to C$ be functions such that $Ran(f) \cap Dom(g) \neq C$
- \varnothing . Prove the following statements.

See

the

sook

2.a) $g \circ f : A \to C$ is well-defined. (5 points)

2.b) If both f and g are everywhere-defined, then $g \circ f : A \to C$ is everywhere-defined. (5 points)

2.c) If both f and g are one-to-one, then $g \circ f : A \to C$ is one-to-one. (5 points)

2.d) If both f and g are onto, then $g \circ f : A \to C$ is onto. (5 points)

3. Let A, B be nonempty sets and $f: A \to B$ be an everywhere-defined function. Show that $R := \{(x,y) \in A^2 | f(x) = f(y)\}$ is an equivalence relation. (30 points)

 $\forall x \in A$, $x \in Dom(f)$ becaum f is even where defined =) $\exists y \in A, \quad y = f(x) \cdot y \text{ is any becaum } f \text{ is a function.}$ $= y \quad f(x) = f(x) = y \quad x \quad R \quad x = y \quad R \text{ is reflexive.} \quad (1)$

 $-\frac{\forall x, y \in A}{R}, \quad \times Ry \Rightarrow f(x) = f(y) = f(y) = f(x) = y R \times R$ $= x \quad R \quad \text{is} \quad \text{symmetric}. \quad (2)$

 $- \forall x, y, z \in A, (xRy) \wedge (yRz) = (f(x) = f(y)) \wedge (f(y) = f(z))$ $\Rightarrow f(x) = f(z) = xRz = R \text{ is translive } (3)$

(1),(2),(3) =) R is on equivalence relation.

4. Let A, B be nonempty sets, $f: A \to B$ be an everywhere-defined function, and $S \subseteq B^2$ be a partial ordering relation. Show that $R := \{(x,y) \in A^2 | f(x) S f(y) \}$ is a partial ordering relation. (30 points)

1-to-1

See Thron 6-2.2 ab the book